Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo...Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.展开更多
Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boun...Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boundary conditions. It is well documented in literature that the traditional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an excessively conservative approximation to the null distribution. However, the magnitude of the conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based third-order method to the mixed models for testing the null hypothesis of zero and non-zero variance component. The proposed method dramatically improved the accuracy of the tests. Extensive simulations were carried out to demonstrate the accuracy of the proposed method in comparison with the standard first-order methods. The results show the conservativeness of the first order methods and the accuracy of the proposed method in approximating the p-values and confidence intervals even when the sample size is small.展开更多
One of the classic approaches in PRNGs is the middle square method in which with a simple mathe-matical model generating pseudorandom numbers in high speed and minimum correlation between output numbers. Despite these...One of the classic approaches in PRNGs is the middle square method in which with a simple mathe-matical model generating pseudorandom numbers in high speed and minimum correlation between output numbers. Despite these unique characteristics, the method contains weaknesses that a broader application of this algo- rithm will face. In this paper is studied middle square method and then a logistic chaotic map is introduced with its specific features and its improved weaknesses via using these characteristics. Finally the NIST tests suite s are presented, in order to detect the specific characteristics expected from truly random sequences.展开更多
基金Project(2011CB013504) supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01) supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period+2 种基金Projects(11772118,51479049,51709282) supported by the National Natural Science Foundation of ChinaProject(2017M620838) supported by the Postdoctoral Science Foundation of ChinaProject(487237) supported by the Natural Sciences and Engineering Research Council of Canada
文摘Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.
文摘Mixed models provide a wide range of applications including hierarchical modeling and longitudinal studies. The tests of variance component in mixed models have long been a methodological challenge because of its boundary conditions. It is well documented in literature that the traditional first-order methods: likelihood ratio statistic, Wald statistic and score statistic, provide an excessively conservative approximation to the null distribution. However, the magnitude of the conservativeness has not been thoroughly explored. In this paper, we propose a likelihood-based third-order method to the mixed models for testing the null hypothesis of zero and non-zero variance component. The proposed method dramatically improved the accuracy of the tests. Extensive simulations were carried out to demonstrate the accuracy of the proposed method in comparison with the standard first-order methods. The results show the conservativeness of the first order methods and the accuracy of the proposed method in approximating the p-values and confidence intervals even when the sample size is small.
文摘One of the classic approaches in PRNGs is the middle square method in which with a simple mathe-matical model generating pseudorandom numbers in high speed and minimum correlation between output numbers. Despite these unique characteristics, the method contains weaknesses that a broader application of this algo- rithm will face. In this paper is studied middle square method and then a logistic chaotic map is introduced with its specific features and its improved weaknesses via using these characteristics. Finally the NIST tests suite s are presented, in order to detect the specific characteristics expected from truly random sequences.