Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin...Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.展开更多
Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inp...Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine(OS-ELM)and initial-training-free online extreme learning machine(ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm(ITF-ORVFL)is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.展开更多
Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from E...Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from EEG signals,it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition.In this piece of work,the authors considered the EEG signal contaminated with Electrocardiogram(ECG)artifacts that occurs mostly in cardiac patients.The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in the EEG signal and verify the proposed algorithm.Being the artifactual signal is non-linear and non-stationary the Random Vector Functional Link Network(RVFLN)model is used in this case.The Machine Learning approach has taken a leading role in every field of current research and RVFLN is one of them.For the proof of adaptive nature,the model is designed with EEG as a reference and artifactual EEG as input.The peaks of ECG signals are evaluated for artifact estimation as the amplitude is higher than the EEG signal.To vary the weight and reduce the error,an exponentially weighted Recursive Least Square(RLS)algorithm is used to design the adaptive filter with the novel RVFLN model.The random vectors are considered in this model with a radial basis function to satisfy the required signal experimentation.It is found that the result is excellent in terms of Mean Square Error(MSE),Normalized Mean Square Error(NMSE),Relative Error(RE),Gain in Signal to Artifact Ratio(GSAR),Signal Noise Ratio(SNR),Information Quantity(IQ),and Improvement in Normalized Power Spectrum(INPS).Also,the proposed method is compared with the earlier methods to show its efficacy.展开更多
基金Projects(61603393,61973306)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Projects(2015M581885,2018T110571)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.
基金supported by the Ministry of Science and Technology of China(2018AAA0101000,2017YFF0205306,WQ20141100198)the National Natural Science Foundation of China(91648117)。
文摘Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine(OS-ELM)and initial-training-free online extreme learning machine(ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm(ITF-ORVFL)is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty.
文摘Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from EEG signals,it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition.In this piece of work,the authors considered the EEG signal contaminated with Electrocardiogram(ECG)artifacts that occurs mostly in cardiac patients.The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in the EEG signal and verify the proposed algorithm.Being the artifactual signal is non-linear and non-stationary the Random Vector Functional Link Network(RVFLN)model is used in this case.The Machine Learning approach has taken a leading role in every field of current research and RVFLN is one of them.For the proof of adaptive nature,the model is designed with EEG as a reference and artifactual EEG as input.The peaks of ECG signals are evaluated for artifact estimation as the amplitude is higher than the EEG signal.To vary the weight and reduce the error,an exponentially weighted Recursive Least Square(RLS)algorithm is used to design the adaptive filter with the novel RVFLN model.The random vectors are considered in this model with a radial basis function to satisfy the required signal experimentation.It is found that the result is excellent in terms of Mean Square Error(MSE),Normalized Mean Square Error(NMSE),Relative Error(RE),Gain in Signal to Artifact Ratio(GSAR),Signal Noise Ratio(SNR),Information Quantity(IQ),and Improvement in Normalized Power Spectrum(INPS).Also,the proposed method is compared with the earlier methods to show its efficacy.