期刊文献+
共找到128篇文章
< 1 2 7 >
每页显示 20 50 100
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
1
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep neural network random vector functional-link (rvfl) network Alternating Direction Method of Multipliers (ADMM)
下载PDF
Underwater Image Classification Based on EfficientnetB0 and Two-Hidden-Layer Random Vector Functional Link
2
作者 ZHOU Zhiyu LIU Mingxuan +2 位作者 JI Haodong WANG Yaming ZHU Zefei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期392-404,共13页
The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c... The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods. 展开更多
关键词 underwater image classification EfficientnetB0 random vector functional link convolutional neural network
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:1
3
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor neural networks random Forest Support vector Machines
下载PDF
Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
4
作者 Polin Rahman Ahmed Rifat +3 位作者 MD.IftehadAmjad Chy Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期757-775,共19页
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni... Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy. 展开更多
关键词 Heart failure prediction data visualization machine learning k-nearest neighbors support vector machine decision tree random forest logistic regression xgboost and catboost artificial neural network
下载PDF
基于多查询的社交网络关键节点挖掘算法
5
作者 辛国栋 朱滕威 +3 位作者 黄俊恒 魏家扬 刘润萱 王巍 《网络与信息安全学报》 2024年第1期79-90,共12页
关键节点挖掘是复杂网络领域的研究重点和热点。针对社交网络中关键嫌疑人挖掘问题,提出基于多查询的社交网络关键节点挖掘算法。该算法将已知嫌疑人作为查询节点,提取其所在的局部拓扑结构,并计算局部拓扑结构中非查询节点的关键程度,... 关键节点挖掘是复杂网络领域的研究重点和热点。针对社交网络中关键嫌疑人挖掘问题,提出基于多查询的社交网络关键节点挖掘算法。该算法将已知嫌疑人作为查询节点,提取其所在的局部拓扑结构,并计算局部拓扑结构中非查询节点的关键程度,从中选择关键程度较高的节点进行推荐。针对现有方法中关键节点计算复杂度高、已知查询节点信息难以有效利用的问题,提出一个两阶段的基于多查询的社交网络关键节点挖掘算法,整合多查询节点的局部拓扑信息和全局节点聚合特征信息,将计算范围从全局缩减到局部,进而对相关节点的关键程度进行量化。具体而言,利用带重启策略的随机游走算法获得多个查询节点的局部拓扑结构;为了得到节点的嵌入向量,基于graphsage模型构建一种无监督的图神经网络模型,该模型结合节点的自身特征和邻居聚合特征来生成嵌入向量,从而为算法框架的相似度计算提供信息输入。基于与查询节点特征的相似性,衡量局部拓扑中节点的关键程度。实验结果显示,所提算法在时间效率和结果有效性方面均优于传统关键节点挖掘算法。 展开更多
关键词 社交网络 随机游走 图神经网络 节点嵌入向量 关键节点
下载PDF
基于机器学习的“一带一路”投资国别风险预测研究
6
作者 向鹏成 高天 +1 位作者 段旭 李东 《工业技术经济》 北大核心 2024年第7期150-160,共11页
“一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资... “一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资国别风险预测指标体系;运用灰色关联分析计算样本国家的综合风险评价值;基于2012~2022年间“一带一路”沿线国家的数据,利用机器学习构建GA-BP神经网络、支持向量回归和随机森林3种预测模型;通过对比预测精度,确定最佳预测模型,利用2021年的指标数据,对2022年的投资国别风险进行预测。研究结果表明:(1)在“一带一路”投资国别风险的研究背景下,支持向量回归模型预测效果最优,证明机器学习模型能够有效应用于风险管理领域;(2)“一带一路”投资国别风险存在明显的地区差异,中东欧地区和东南亚地区投资国别风险普遍较低,而南亚地区投资国别风险普遍较高,但都存在特例。本文研究结果可为“走出去”企业在“一带一路”沿线国家的投资决策提供参考。 展开更多
关键词 “一带一路”投资 国别风险 机器学习 风险预测 GA-BP神经网络 支持向量回归 随机森林 地区差异
下载PDF
应用机器学习算法模型预测兴安落叶松地上生物量 被引量:2
7
作者 沐钊颖 张兹鹏 +1 位作者 张浩 姜立春 《东北林业大学学报》 CAS CSCD 北大核心 2024年第3期41-47,共7页
为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法... 为了准确预测兴安落叶松地上生物量,以小兴安岭201株兴安落叶松地上生物量作为研究对象,以胸径(D)和树高(H)为变量,构建随机森林(RF)、人工神经网络(ANN)、支持向量回归(SVR)和梯度提升回归树(GBRT)等4种机器学习模型,并将机器学习算法的预测结果与传统二元生物量模型的预测结果进行对比分析。结果表明:对比传统生物量模型,4种机器学习算法的拟合效果与检验精度均有了大幅度提高。模型拟合精度由高到低的顺序为随机森林、梯度提升回归树、人工神经网络、支持向量回归、传统生物量模型;RF模型在各模型中的拟合精度最高,相对于传统生物量模型,RF模型的确定系数(R~2)提升了3.72%,均方根误差(R_(MSE))降低了44.47%,平均绝对误差(M_(AE))降低了42.81%,相对误差绝对值(M_(PB))降低了42.80%,赤池信息准则值降低了18.17%。模型检验精度由高到低的顺序为随机森林、人工神经网络、梯度提升回归树、支持向量回归、传统生物量模型;RF模型在各模型中的预测精度最高,与传统生物量模型相比,RF模型的确定系数(R~2)提升了1.08%,均方根误差(R_(MSE))降低了10.95%,平均绝对误差(M_(AE))降低了10.34%,相对误差绝对值(M_(PB))降低了10.34%,赤池信息准则值降低了5.20%。因此,相对于传统生物量模型,4种机器学习算法模型均可以提高兴安落叶松地上生物量的预测精度,RF模型的预测精度最高。 展开更多
关键词 兴安落叶松 地上生物量 随机森林 人工神经网络 支持向量回归 梯度提升回归树
下载PDF
基于改进两步法采样策略和卷积神经网络的崩塌易发性评价
8
作者 邓日朗 张庆华 +4 位作者 刘伟 陈凌伟 谭建辉 高泽茂 郑先昌 《地质科技通报》 CAS CSCD 北大核心 2024年第2期186-200,共15页
机器学习在崩塌滑坡泥石流地质灾害易发性分析评价领域已得到广泛的研究性应用,非灾害样本的选取是易发性建模过程中的关键问题,传统随机抽样和手工标注方法可能存在随机性和主观性。将土质崩塌易发性评价视为正例无标记(positive and u... 机器学习在崩塌滑坡泥石流地质灾害易发性分析评价领域已得到广泛的研究性应用,非灾害样本的选取是易发性建模过程中的关键问题,传统随机抽样和手工标注方法可能存在随机性和主观性。将土质崩塌易发性评价视为正例无标记(positive and unlabeled,简称PU)学习,提出了一种结合信息量(information value,简称IV)和间谍技术(Spy)的两步卷积神经网络(convolutional neural networks,简称CNN)框架(ISpy-CNN)。以广州市黄埔区崩塌编录和15类基础环境因子,通过信息量模型筛选出部分低信息量样本;采用间谍技术训练CNN模型,从低信息量样本中识别出具有高置信度的可靠负例划分为非崩塌样本;分别基于该学习框架、传统间谍技术和随机抽样,使用支持向量机(support vector machine,简称SVM)和随机森林(random forest,简称RF)对比验证。结果表明,ISpy-CNN框架在验证集上的准确率、F1值、敏感度和特异度较随机采样分别提升了6.82%,6.82%,6.82%,8.23%,较传统Spy技术分别提升了2.86%,2.89%,2.86%,2.31%;PU学习中第2步采用CNN模型的预测精度高于RF和SVM模型;与传统Spy技术相比,增加相同数量训练样本,ISpy-CNN框架筛选的样本集表现出较高的稳定性、预测精度和增长率。本研究提出的ISpy-CNN框架能更好地辅助选取高质量非灾害样本,且崩塌易发性分区结果更符合实际的崩塌空间分布。 展开更多
关键词 崩塌 易发性评价 PU学习 间谍技术 信息量 卷积神经网络 随机森林 支持向量机
下载PDF
基于NGO-CNN-SVM的高标准农田灌溉工程施工成本预测
9
作者 韩坤 王惟璐 +3 位作者 黄雪峰 李鹏海 李春生 郑俊林 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期62-72,共11页
为提高高标准农田项目施工成本的预测精度,控制施工成本在合理范围,减少投资风险,该研究从单体灌溉工程施工成本预测角度出发,通过随机森林(random forest,RF)筛选出高标准农田灌溉工程施工成本的关键影响因素,结合卷积神经网络(convolu... 为提高高标准农田项目施工成本的预测精度,控制施工成本在合理范围,减少投资风险,该研究从单体灌溉工程施工成本预测角度出发,通过随机森林(random forest,RF)筛选出高标准农田灌溉工程施工成本的关键影响因素,结合卷积神经网络(convolutional neural networks,CNN)和支持向量机(support vector machine,SVM)两种模型的优点,通过北方苍鹰优化算法(northern goshawk optimization,NGO)对模型里的惩罚因子和核参数进行寻优,构建基于NGO-CNN-SVM的施工成本预测模型。通过辽宁省2018—2023年高标准农田工程中灌溉工程的施工成本数据,选取样本决定系数R^(2)、平均绝对误差MAE、平均绝对百分比误差MAPE和均方根误差RMSE作为精度指标进行分析,结果表明:基于NGO-CNN-SVM的施工成本预测模型在渠道工程中MAE低于0.615万元,RMSE低于0.512万元,R^(2)达到0.968以上,相对误差小于4.210%;在进水闸工程中MAE低于0.610万元,RMSE低于0.536万元,R^(2)达到0.966以上,相对误差小于4.410%;在桥涵工程中MAE低于0.494万元,RMSE低于0.477万元,R^(2)达到0.970以上,相对误差小于3.548%,并相比较于反向传播神经网络,CNN和CNN-SVM模型,NGO-CNN-SVM模型的预测结果均最优。通过特征选择、模型融合、算法优化以及不同模型对比表明NGO-CNN-SVM模型具有更高的预测准确率和泛化性,可为高标准农田灌溉工程施工成本预测提供理论依据。 展开更多
关键词 高标准农田 灌溉 随机森林 北方苍鹰优化算法 卷积神经网络 支持向量机 施工成本
下载PDF
随机森林优化的静动态耦合模型在滑坡位移预测中的应用
10
作者 蒋宏伟 刘健鹏 +2 位作者 王新杰 陈春红 刘惠 《常州大学学报(自然科学版)》 CAS 2024年第3期80-92,共13页
以重庆市奉节县生基包滑坡为例,首先采用静态的支持向量回归(SVR)机器学习算法和动态的长短期记忆神经网络(LSTM)机器学习算法对滑坡位移进行预测;其次引入随机森林(RF)算法,在输入因素筛选的基础上,对SVR模型和LSTM模型的预测结果进行... 以重庆市奉节县生基包滑坡为例,首先采用静态的支持向量回归(SVR)机器学习算法和动态的长短期记忆神经网络(LSTM)机器学习算法对滑坡位移进行预测;其次引入随机森林(RF)算法,在输入因素筛选的基础上,对SVR模型和LSTM模型的预测结果进行更优解分类预测;最后通过RF模型输出概率值,对静动态耦合模型(SVR-LSTM)进行权重赋值,得到RF优化的SVR-LSTM滑坡位移预测模型。结果表明LSTM模型预测整体优于SVR模型,RF优化的SVR-LSTM滑坡位移预测模型集成了静态SVR与动态LSTM预测模型的优势,其预测性能与单一的SVR模型和LSTM模型相比更优。研究提供了一种滑坡位移预测模型集成的思路,为三峡库区的地质灾害预测预报提供借鉴和参考。 展开更多
关键词 滑坡位移预测 随机森林 长短期记忆神经网络 支持向量回归 算法集成
下载PDF
基于EMD与机器学习算法的近零能耗建筑负荷预测方法
11
作者 韩少锋 吴迪 +5 位作者 张圣原 苗睿佺 刘奥 韩中合 韩旭 郭加澄 《暖通空调》 2024年第7期82-89,97,共9页
采用皮尔逊相关系数法分析了不同特征变量与冷热负荷的相关性,确定了预测模型的输入特征变量。采用经验模态分解(EMD)对逐日冷热负荷按频分解,然后采用机器学习算法,即反向传播神经网络(BPNN)、随机森林(RF)和支持向量机(SVM),分别对不... 采用皮尔逊相关系数法分析了不同特征变量与冷热负荷的相关性,确定了预测模型的输入特征变量。采用经验模态分解(EMD)对逐日冷热负荷按频分解,然后采用机器学习算法,即反向传播神经网络(BPNN)、随机森林(RF)和支持向量机(SVM),分别对不同频率的负荷量进行了训练、验证,最后重构得到了近零能耗建筑预测负荷。基于上述方法,以北京市某近零能耗居住建筑为研究对象,比较了不同算法预测结果的精确度。结果表明:采用EMD与RF算法相结合对近零能耗建筑冷热负荷的预测精确度较高。进一步采用穷举搜索法对模型初设参数进行了优化,冷热负荷预测结果精确度提高,冷负荷预测结果的决定系数R2、平均绝对百分比误差MAPE分别为0.996、1.32%,热负荷预测结果的R2、MAPE分别为0.997、0.79%。 展开更多
关键词 近零能耗建筑 负荷预测 经验模态分解 机器学习算法 反向传播神经网络(BPNN) 随机森林(RF) 支持向量机(SVM) 穷举搜索法
下载PDF
基于机器学习模型的多层土壤湿度反演
12
作者 刘娣 孙佳倩 余钟波 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期7-14,共8页
为了获取深层土壤湿度缺测值,采用支持向量机、BP神经网络和随机森林3种机器学习算法,在表层至深层土壤中利用主成分分析法选择与土壤湿度相关性显著的气象因子作为输入数据,建立多层土壤湿度反演模型反演了不同深度的土壤湿度。结果表... 为了获取深层土壤湿度缺测值,采用支持向量机、BP神经网络和随机森林3种机器学习算法,在表层至深层土壤中利用主成分分析法选择与土壤湿度相关性显著的气象因子作为输入数据,建立多层土壤湿度反演模型反演了不同深度的土壤湿度。结果表明:随机森林模型模拟结果更加稳定,反演效果更佳;受气象因子驱动的影响,3种机器学习模型对地表0~10 cm深度内土壤湿度的反演效果更佳,对深层土壤湿度的反演效果随着深度增加而变差;增加表层土壤湿度及不同深度土壤温度作为驱动因子可以有效提高机器学习模型对深层土壤湿度的反演能力。 展开更多
关键词 土壤湿度 机器学习 支持向量机 BP神经网络 随机森林 主成分分析法
下载PDF
基于四种算法比较分析Venlo型玻璃温室气温季节预报模型
13
作者 吴慧臻 李东升 +2 位作者 杨再强 张丰寅 陈旸 《中国农业气象》 CSCD 2024年第2期135-146,共12页
利用2021年2月27日-2023年3月4日南京信息工程大学Venlo型玻璃温室内、外气象观测数据,基于多元回归(Multiple regression,MR)、BP人工神经网络(BP artificial neural networks,BPANN)、随机森林(Random forest,RF)和支持向量机(Support... 利用2021年2月27日-2023年3月4日南京信息工程大学Venlo型玻璃温室内、外气象观测数据,基于多元回归(Multiple regression,MR)、BP人工神经网络(BP artificial neural networks,BPANN)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)构建温室内日平均气温、日最低气温和日最高气温的季节预报模型,并进行验证。结果表明:温室内日平均气温、日最低气温季节预报模型的拟合精度明显高于日最高气温季节预报模型;各模型对春、夏、秋季温室内气温的拟合精度高于冬季。对于日平均气温和日最低气温季节预报模型而言,4种算法构建的春、夏、秋季预报模型的拟合精度均较高,RF模型模拟效果更为稳定,其模拟值与实际观测值决定系数(R^(2))均值均在0.94以上,均方根误差(RMSE)、绝对误差(MAE)均值在1.5℃以内;对于日最高气温季节预报模型,RF模型对春、夏、秋季的拟合精度整体高于其他模型,R^(2)均值均在0.75以上。MR模型对冬季室内气温的拟合精度较好,更适用于预测冬季温室内气温。综合而言,选择RF模型预报春、夏、秋季的玻璃温室内气温,选择MR模型预报冬季玻璃温室内气温较为可行。 展开更多
关键词 Venlo型玻璃温室 温度季节预报模型 神经网络 随机森林 支持向量机
下载PDF
基于近红外光谱的醇化雪茄烟叶品种判别模型研究
14
作者 孙利 张毅 +3 位作者 孟广云 余彦 高飞 王潞 《天津农业科学》 CAS 2024年第4期82-90,共9页
为提高不同醇化后雪茄烟叶品种的判别准确性,采用多元散射校正等预处理算法对光谱数据进行去噪处理,以降低试验、环境和仪器噪音对数据的影响。结合支持向量机、BP神经网络和随机森林建立不同品种的近红外光谱判别模型,通过准确率和混... 为提高不同醇化后雪茄烟叶品种的判别准确性,采用多元散射校正等预处理算法对光谱数据进行去噪处理,以降低试验、环境和仪器噪音对数据的影响。结合支持向量机、BP神经网络和随机森林建立不同品种的近红外光谱判别模型,通过准确率和混淆矩阵评估模型性能。结果表明:采用SNV+FD预处理算法和CARS特征波长选择算法建立的模型效果最佳,在训练集和预测集上均表现出较高准确性,证实了利用近红外光谱技术快速判别不同醇化后雪茄烟叶品种的可行性。综上,利用近红外光谱技术可实现对不同品种醇化后雪茄烟叶的无损、快速判别,进一步提高雪茄烟叶工业可用性。 展开更多
关键词 雪茄烟叶 近红外光谱技术 品种判别 支持向量机 随机森林 BP神经网络
下载PDF
考虑上游来水影响的中长期径流预报
15
作者 李世林 黄炜斌 +3 位作者 陈枭 周开喜 钟璐 曾宏 《水力发电》 CAS 2024年第5期16-20,121,共6页
雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年... 雅砻江流域地面气象站点不足、分布不均,难以获得精确的流域面降雨资料,加之传统中长期径流预报模型泛化能力有限,中长期径流预报存在较大瓶颈。充分考虑流域水库间的物理联系,基于上下游水库流量变化在时空上的相似性,对1957年~2020年锦屏一级水库和二滩水库的历史月径流数据进行主成分分析,使用BP人工神经网络、随机森林和支持向量回归3种机器学习方法建立3种径流预报模型,通过决定系数R^(2),合格率Q R以及平均相对误差MRE三项指标构成的评价体系对预测结果进行评估。结果表明,上游水库对于下游水库的入库流量具有显著影响,且3种模型在二滩水库中长期径流预报上均具有较好的预报效果(R^(2)>0.8、Q R>0.7、MRE<0.2)。随机森林模型模拟效果整体优于BP人工神经网络和支持向量回归模型,3种模型均具有较好的实用性,能为流域水资源精细化调度及科学管理提供数据基础。 展开更多
关键词 径流预报 中长期 主成分分析 BP人工神经网络 随机森林 支持向量回归 二滩水库
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition
16
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
集中供热热力站短期热负荷预测模型对比研究 被引量:1
17
作者 果泽泉 何波 +6 位作者 何强 周继平 蒋雅玲 张凡 陈超 郭放 鄢烈详 《区域供热》 2024年第1期146-158,共13页
以湖北省十堰市一个集中供热热力站为对象,基于实测运行数据和气象数据进行供热负荷预测研究。分别采用随机森林(Random Forest,RF)、极度梯度提升(eXtreme Gradient Boosting,XGBoost)、BP神经网络、支持向量回归(Support Vector Regre... 以湖北省十堰市一个集中供热热力站为对象,基于实测运行数据和气象数据进行供热负荷预测研究。分别采用随机森林(Random Forest,RF)、极度梯度提升(eXtreme Gradient Boosting,XGBoost)、BP神经网络、支持向量回归(Support Vector Regression,SVR)、长短期记忆(Long Short Term Memory,LSTM)神经网络5种方法进行预测模型训练及测试,基于粒子群优化算法(Particle Swarm Optimization,PSO)优化各模型参数,获得最优模型,在此基础上针对不同模型在不同短期负荷预测情景下的表现进行对比研究。研究结果表明:在未来24h预测情景下,随机森林、XGBoost模型的预测精度最高,二者的平均绝对误差(MAE)分别为0.84 W/m^(2)及1.00 W/m^(2)。在未来1h预测情景下,SVR模型的预测精度最高,其MAE为0.18 W/m^(2)。 展开更多
关键词 集中供热 负荷预测 随机森林 极度梯度提升 BP神经网络 支持向量回归 长短期记忆神经网络
下载PDF
特征扩展的随机向量函数链神经网络
18
作者 龙茂森 王士同 《软件学报》 EI CSCD 北大核心 2024年第6期2903-2922,共20页
基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的... 基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system,BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能.然而,当遇到大型复杂的数据集时,BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度,从而对其可解释性造成了不利影响.对此,提出一种兼顾分类性能和可解释性的模糊神经网络,将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN).在该网络中,一个以原始数据为输入的RVFLNN被作为主体结构,BL-DFIS则用作性能补充,这意味着FA-RVFLNN包含具有性能增强作用的直接链接.由于主体结构的增强节点使用Sigmoid激活函数,因此,其推理过程可借助一种模糊逻辑算子(I-OR)来解释.而且,具有明确含义的原始输入数据也有助于解释主体结构的推理规则.在直接链接的支撑下,FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息.实验表明:FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题,也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右),在泛化性能和网络规模上仍具有竞争力. 展开更多
关键词 宽度学习系统 模糊推理系统 特征扩展 随机向量函数链神经网络(rvflNN) Sigmoid激活函数 可解释
下载PDF
特发性肺纤维化肺移植受者术后严重原发性移植物功能障碍预后模型的建立
19
作者 宋志云 戴韬寅 +5 位作者 顾思佳 李小杉 黄睦容 唐诗笑 胡春晓 陈静瑜 《器官移植》 CAS CSCD 北大核心 2024年第4期591-598,共8页
目的探索性构建基于机器学习算法预测特发性肺纤维化(IPF)肺移植受者术后原发性移植物功能障碍(PGD)的预后模型。方法回顾性分析226例行肺移植手术的IPF患者的资料。所有入组患者按7∶3随机划分为训练集和测试集。利用正则化logistic回... 目的探索性构建基于机器学习算法预测特发性肺纤维化(IPF)肺移植受者术后原发性移植物功能障碍(PGD)的预后模型。方法回顾性分析226例行肺移植手术的IPF患者的资料。所有入组患者按7∶3随机划分为训练集和测试集。利用正则化logistic回归、随机森林、支持向量机和人工神经网络4种方法,通过变量筛选、构建模型、模型调优流程构建模型。使用受试者工作特征曲线下面积(AUC)、阳性预测值、阴性预测值和准确度进行模型性能评估。结果共筛选出16个关键特征用于建模。4种预后模型的AUC值均>0.7。DeLong检验和McNemar检验发现模型间性能差异无统计学意义(均为P>0.05)。结论基于4种机器学习算法初步构建了肺移植术后3级PGD的预后模型。各模型整体预测性能相似,均可对IPF患者肺移植术后3级PGD进行较好的预测。 展开更多
关键词 肺移植 特发性肺纤维化 机器学习 原发性移植物功能障碍 随机森林 LOGISTIC回归 支持向量机 人工神经网络
下载PDF
基于集成学习的钢铁(高炉)行业碳排放预测方法
20
作者 叶强 陈吴晓 +2 位作者 胡泽延 蔡雨晴 林涵 《工业加热》 CAS 2024年第6期41-46,共6页
钢铁工业是能源消耗大、碳排放大的典型产业。中国的钢铁业是全球碳排放最多的行业之一。目前,由于缺乏监测数据,对钢铁行业企业碳排放预测的研究很少。为了有效解决这一问题,提出一种基于集成学习的钢铁(高炉)行业碳排放预测方法。选... 钢铁工业是能源消耗大、碳排放大的典型产业。中国的钢铁业是全球碳排放最多的行业之一。目前,由于缺乏监测数据,对钢铁行业企业碳排放预测的研究很少。为了有效解决这一问题,提出一种基于集成学习的钢铁(高炉)行业碳排放预测方法。选取具有较好计量手段的用电量作为碳排放影响因素,并结合高炉和电弧炉工艺,采用了三种机器学习模型,分别是反向传播(back propagation,简称BP)神经网络、支持向量机和随机森林,这些模型在机器学习领域具有广泛的应用前景。利用Shapley集成学习方法进行碳排放预测。通过仿真实验验证了本文所提的以用电量输入的钢铁行业碳排放预测模型具有理想的有效性与准确性。该结果可以为钢铁行业企业在减排和资源优化方面提供科学依据。 展开更多
关键词 BP神经网络 支持向量机 随机森林 钢铁(高炉)行业
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部