BACKGROUND: Certain neural functions, such as peripheral reflexes, differ between genders, while higher brain functions, such as language, are asymmetrically distributed between the two hemispheres. The question rema...BACKGROUND: Certain neural functions, such as peripheral reflexes, differ between genders, while higher brain functions, such as language, are asymmetrically distributed between the two hemispheres. The question remains as to whether depth perception differs between hemispheric laterality and genders, and whether it is affected by eye dominance. OBJECTIVE: To determine whether depth perception is influenced by factors such as gender, eye dominance, and hemispheric lateralization by recording evoked potential associated with depth perception. DESIGN, TIME AND SETTING: A contrast observation based on neuroelectrophysiology was performed at the Department of Biophysics of Ege University Medical School between June 2006 and April 2007. PARTICIPANTS: A total of 34 subjects, 19 females and 15 males, were included in the study with a mean age of (31.0 ± 6.9) years. All subjects were free of neurological or psychological disorders, or problems such as strabismus or vision correction. METHODS: Random-dot stereograms were used to elicit brain activity. A specially designed signal acquisition system employing two computers was used to record evoked potentials from both hemispheres via two pairs of scalp electrodes placed over the occipitotemporal areas of both hemispheres at symmetrical locations. MAIN OUTCOME MEASURES: Negative potential with a mean latency of (211.21 ±25.55) ms and a mean amplitude of (6.05 ± 1.53) pV was recorded from both occipitotemporal areas in 30 out of 34 participants. This was termed "Nd" and represented the evoked potential associated with depth perception. RESULTS: There were no significant differences in Nd amplitude or latency between the two hemispheres, the two eyes, or genders (P 〉 0.05). CONCLUSION: The evoked potential associated with depth perception was not influenced by gender, hemisphere, or eye dominance.展开更多
文摘BACKGROUND: Certain neural functions, such as peripheral reflexes, differ between genders, while higher brain functions, such as language, are asymmetrically distributed between the two hemispheres. The question remains as to whether depth perception differs between hemispheric laterality and genders, and whether it is affected by eye dominance. OBJECTIVE: To determine whether depth perception is influenced by factors such as gender, eye dominance, and hemispheric lateralization by recording evoked potential associated with depth perception. DESIGN, TIME AND SETTING: A contrast observation based on neuroelectrophysiology was performed at the Department of Biophysics of Ege University Medical School between June 2006 and April 2007. PARTICIPANTS: A total of 34 subjects, 19 females and 15 males, were included in the study with a mean age of (31.0 ± 6.9) years. All subjects were free of neurological or psychological disorders, or problems such as strabismus or vision correction. METHODS: Random-dot stereograms were used to elicit brain activity. A specially designed signal acquisition system employing two computers was used to record evoked potentials from both hemispheres via two pairs of scalp electrodes placed over the occipitotemporal areas of both hemispheres at symmetrical locations. MAIN OUTCOME MEASURES: Negative potential with a mean latency of (211.21 ±25.55) ms and a mean amplitude of (6.05 ± 1.53) pV was recorded from both occipitotemporal areas in 30 out of 34 participants. This was termed "Nd" and represented the evoked potential associated with depth perception. RESULTS: There were no significant differences in Nd amplitude or latency between the two hemispheres, the two eyes, or genders (P 〉 0.05). CONCLUSION: The evoked potential associated with depth perception was not influenced by gender, hemisphere, or eye dominance.