Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in ...Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods.展开更多
A computationally efficient method for jointly estimating both Directions Of Arrival (DOA) and ranges of near field sources is presented. The proposed algorithm does not need any spectral peak searching and the 2-D pa...A computationally efficient method for jointly estimating both Directions Of Arrival (DOA) and ranges of near field sources is presented. The proposed algorithm does not need any spectral peak searching and the 2-D parameters are automatically paired. It is suitable for arbitrary additive Gaussian noise environment. Furthermore, its performances are confirmed by computer simulations.展开更多
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co...Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.展开更多
The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of ...The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of extended targets are investigated. It is demonstrated by simulations that the target length measured by the bistatic H RRP is more meaningful and accurate than that by the monostatic HRRP,though the monostatic H RRP has been well developed and widely used in target recognizing and classification. The estimation results of a cone shaped target are present and compared at the end of the paper. To assure the reliability of the simulation,the bistatic H RRP is obtained through the scattering field data calculated by a fullwave numerical method,FE-BI-MLFMA.展开更多
An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic pro...An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.展开更多
This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high rang...This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high range resolution. Then the methods are discussed for conducting surveillance through walls, detecting and locating the moving persons behind the partitions. The schematic diagram of Through-Wall Detecting Radar (TWDR) and the models of moving target are shown and the principle of detecting the moving target is also provided with coherent superimposing technique on a range gate. Finally an algorithm for estimating the location of targets is given. The performance of TWDR is validated by the experiments of penetrating a wood block, a red brick wall and a reinforced concrete wall.展开更多
This paper presents a new method to estimate the range and the speed of a moving vessel by the features of line spectrum. Dopplerlet matching pursuit are used to estimate range and speed. The line spectrums of moving ...This paper presents a new method to estimate the range and the speed of a moving vessel by the features of line spectrum. Dopplerlet matching pursuit are used to estimate range and speed. The line spectrums of moving vessel radiated-noises show some time-frequency features. The features of line spectrum reflect the variation of moving state of the vessel. The computer simulation shows the method is practicable and effective. Moreover, the method is applied to estimate the range and the speed of a real underwater signal and the results agree with the data of the experiment on the sea.展开更多
For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging acc...For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging accuracy were studied through theoretical analysis and simulations. Both the match-filtering based coherent TOA estimation algorithm and the energy-detection based non-coherent algorithm were used during simulations. Results show that the pulse shape has the least effect on the ranging accuracy. Increasing the pulse bandwidth can improve the ranging performance, but the performance is hardly improved any more when the bandwidth is increased beyond a certain level. PRI should be set long enough to guarantee the accurate ranging, because when PRI is shorter than the maximum excess delay of the channel, the ranging accuracy will be deteriorated by inter-pulse interference.展开更多
The frequency invariability of the warped modal signal and the warped signal autocorrelation function in shallow water is discussed.A method is proposed for passive source-range estimation based on the frequency invar...The frequency invariability of the warped modal signal and the warped signal autocorrelation function in shallow water is discussed.A method is proposed for passive source-range estimation based on the frequency invariability and warping transform of signal autocorrelation function received by a single hydrophone in a range-independent or weak range-dependent shallow water environment.In the method,a guided source with a known range is employed to provide the crucial and relative invariant scaled features.The experimental data in shallow water with an iso-speed profile and a fluctuated thermocline are used to verify this approach.The relative errors of the source range estimation are basically less than 10%.展开更多
An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transf...An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transform. For an ideal waveguide, there are invariable frequency features both in the frequency spectrum of the warped signal corresponding to modal cut-off frequencies and the warped signal autocorrelation function due to modal interference. These intrinsic frequency features can be used to passive source ranging. So, the approximate rela- tionship between the frequency of warped signal at an unknown source range and the intrinsic frequency extracted by the time warping transform is derived. These rules can be generalized to an actual shallow water waveguide. Employing an acoustic model to offer the invariable frequency spectrum features, the impulsive signal data collected by a single hydrophone in the North Yellow Sea in December 2011 are analyzed to verify the proposed source ranging ap- proach. The estimated ranges are in good agreement with the ranges measured by GPS, and the mean relative error of range estimation is less than 10%.展开更多
This paper presents a novel near-field source localization method based on the time-frequency sparse model. Firstly, the method converts the time domain data of array output into time-frequency domain by time-frequenc...This paper presents a novel near-field source localization method based on the time-frequency sparse model. Firstly, the method converts the time domain data of array output into time-frequency domain by time-frequency transform; then constructs sparse localization model by utilizing the specially selected time-frequency points, and finally the greedy algorithms are chosen to solve the sparse problem to localize the source. When the coherent sources exist, we propose an additional iterative selection procedure to improve the estimation performance. The proposed method is suitable for uncorrelated and coherent sources, moreover, the improved estimation accuracy and the robustness to low signal to noise ratio (SNR) are achieved. Simulations results verify the efficiency of the proposed algorithm展开更多
The problem of estimating quantization error in 2D images is an inherent problem in computer vision.The outcome of this problem is directly related to the error in reconstructed 3D position coordinates of an object.Th...The problem of estimating quantization error in 2D images is an inherent problem in computer vision.The outcome of this problem is directly related to the error in reconstructed 3D position coordinates of an object.Thus estimation of quantization error has its own importance in stereo vision.Although the quantization error cannot be controlled fully,still statistical error analysis helps us to measure the performance of stereo systems that relies on the imaging parameters.Generally,it is assumed that the quantization error in 2D images is distributed uniformly that need not to be true from a practical aspect.In this paper,we have incorporated noise distributions(Triangular and Trapezoidal)for the stochastic error analysis of the quantization error in stereo imaging systems.For the validation of the theoretical analysis,the detailed simulation study is carried out by considering different cases.展开更多
Navigation message designing with high accuracy guarantee is the key to efficient navigation message distribution in the global navigation satellite system(GNSS). Developing high accuracy-aware navigation message de...Navigation message designing with high accuracy guarantee is the key to efficient navigation message distribution in the global navigation satellite system(GNSS). Developing high accuracy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged.The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation(ERD) to improve the existing well-known navigation message on L1 frequency(NAV) of global positioning system(GPS) for good accuracy service; a numerical analysis approximation method(NAAM) to evaluate the range error due to truncation(RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic(IGU), ERDs are generated in real time for error correction.Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.展开更多
This paper introduces infrastructure-to-vehicle and vehicle-to-vehicle communications using VLC.A VLC coupled with a high-speed image sensor is introduced(i.e.,image sensor communication).The high-speed image sensors ...This paper introduces infrastructure-to-vehicle and vehicle-to-vehicle communications using VLC.A VLC coupled with a high-speed image sensor is introduced(i.e.,image sensor communication).The high-speed image sensors provide eyes for autonomous and connected vehicles.VLC imparts data reception capability to image sensors with necessary functions,which can then be provided to autonomous and connected vehicles.In this paper,some of our research on coupling VLC to high-speed image sensors is introduced,including our key findings:the basics of ISC,a vehicle motion model,and range estimation.展开更多
基金supported by the National Natural Science Foundation of China(1197428611904274)+1 种基金the Shaanxi Young Science and Technology Star Program(2021KJXX-07)the fundamental research funding for characteristic disciplines(G2022WD0235)。
文摘Taking the real part and the imaginary part of complex sound pressure of the sound field as features,a transfer learning model is constructed.Based on the pre-training of a large amount of underwater acoustic data in the preselected sea area using the convolutional neural network(CNN),the few-shot underwater acoustic data in the test sea area are retrained to study the underwater sound source ranging problem.The S5 voyage data of SWellEX-96 experiment is used to verify the proposed method,realize the range estimation for the shallow source in the experiment,and compare the range estimation performance of the underwater target sound source of four methods:matched field processing(MFP),generalized regression neural network(GRNN),traditional CNN,and transfer learning.Experimental data processing results show that the transfer learning model based on residual CNN can effectively realize range estimation in few-shot scenes,and the estimation performance is remarkably better than that of other methods.
基金Supported in part by Trans-Century Trainning Programme Foundation for the Talents by the State Education Commission and the National Natural Science Foundation of China (No.60172028)
文摘A computationally efficient method for jointly estimating both Directions Of Arrival (DOA) and ranges of near field sources is presented. The proposed algorithm does not need any spectral peak searching and the 2-D parameters are automatically paired. It is suitable for arbitrary additive Gaussian noise environment. Furthermore, its performances are confirmed by computer simulations.
基金supported by the National Natural Science Foundation of China(No.62171052 and No.61971054)the Fundamental Research Funds for the Central Universities(No.24820232023YQTD01).
文摘Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation.
基金Supported by the National Natural Science Fundation of China(61001192)
文摘The approach to estimate the length of extended targets by using the bistatic high resolution range profile( H RRP) is analyzed in this paper. The relationship between the bistatic H RRP and the monostatic H RRP of extended targets are investigated. It is demonstrated by simulations that the target length measured by the bistatic H RRP is more meaningful and accurate than that by the monostatic HRRP,though the monostatic H RRP has been well developed and widely used in target recognizing and classification. The estimation results of a cone shaped target are present and compared at the end of the paper. To assure the reliability of the simulation,the bistatic H RRP is obtained through the scattering field data calculated by a fullwave numerical method,FE-BI-MLFMA.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.
基金Supported by the National 863 Program (No.2001AA132020).
文摘This paper firstly analyzes the property of the low frequency electromagnetic wave, which can penetrate many types of non-metallic materials, and the ability of Ultra-Wide Band (UWB) impulse signal which has high range resolution. Then the methods are discussed for conducting surveillance through walls, detecting and locating the moving persons behind the partitions. The schematic diagram of Through-Wall Detecting Radar (TWDR) and the models of moving target are shown and the principle of detecting the moving target is also provided with coherent superimposing technique on a range gate. Finally an algorithm for estimating the location of targets is given. The performance of TWDR is validated by the experiments of penetrating a wood block, a red brick wall and a reinforced concrete wall.
基金the National Natural Science Foundation of China(19974060).
文摘This paper presents a new method to estimate the range and the speed of a moving vessel by the features of line spectrum. Dopplerlet matching pursuit are used to estimate range and speed. The line spectrums of moving vessel radiated-noises show some time-frequency features. The features of line spectrum reflect the variation of moving state of the vessel. The computer simulation shows the method is practicable and effective. Moreover, the method is applied to estimate the range and the speed of a real underwater signal and the results agree with the data of the experiment on the sea.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60432040)the Natural Science Foundation of Guangdong Privince(Grant No.9451805707003235)
文摘For impulse radio ultra-wideband (IR-UWB) ranging systems,effects of the settings of transmitter-related parameters, which include the pulse shape, the bandwidth and the pulse repetition interval (PRI), on ranging accuracy were studied through theoretical analysis and simulations. Both the match-filtering based coherent TOA estimation algorithm and the energy-detection based non-coherent algorithm were used during simulations. Results show that the pulse shape has the least effect on the ranging accuracy. Increasing the pulse bandwidth can improve the ranging performance, but the performance is hardly improved any more when the bandwidth is increased beyond a certain level. PRI should be set long enough to guarantee the accurate ranging, because when PRI is shorter than the maximum excess delay of the channel, the ranging accuracy will be deteriorated by inter-pulse interference.
基金supported by the Program of "One Hundred Talented People" of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11174312,10974218 and 11125420)
文摘The frequency invariability of the warped modal signal and the warped signal autocorrelation function in shallow water is discussed.A method is proposed for passive source-range estimation based on the frequency invariability and warping transform of signal autocorrelation function received by a single hydrophone in a range-independent or weak range-dependent shallow water environment.In the method,a guided source with a known range is employed to provide the crucial and relative invariant scaled features.The experimental data in shallow water with an iso-speed profile and a fluctuated thermocline are used to verify this approach.The relative errors of the source range estimation are basically less than 10%.
基金supported by the Program of One Hundred Talented People of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(11174312,10974218,11125420)
文摘An approach for long-range passive impulsive source ranging with a single receiver in shallow water is proposed, which utilizes the frequency spectrum of the warped signal autocor- relation function via warping transform. For an ideal waveguide, there are invariable frequency features both in the frequency spectrum of the warped signal corresponding to modal cut-off frequencies and the warped signal autocorrelation function due to modal interference. These intrinsic frequency features can be used to passive source ranging. So, the approximate rela- tionship between the frequency of warped signal at an unknown source range and the intrinsic frequency extracted by the time warping transform is derived. These rules can be generalized to an actual shallow water waveguide. Employing an acoustic model to offer the invariable frequency spectrum features, the impulsive signal data collected by a single hydrophone in the North Yellow Sea in December 2011 are analyzed to verify the proposed source ranging ap- proach. The estimated ranges are in good agreement with the ranges measured by GPS, and the mean relative error of range estimation is less than 10%.
基金supported by the National Natural Science Foundation of China(60901060)
文摘This paper presents a novel near-field source localization method based on the time-frequency sparse model. Firstly, the method converts the time domain data of array output into time-frequency domain by time-frequency transform; then constructs sparse localization model by utilizing the specially selected time-frequency points, and finally the greedy algorithms are chosen to solve the sparse problem to localize the source. When the coherent sources exist, we propose an additional iterative selection procedure to improve the estimation performance. The proposed method is suitable for uncorrelated and coherent sources, moreover, the improved estimation accuracy and the robustness to low signal to noise ratio (SNR) are achieved. Simulations results verify the efficiency of the proposed algorithm
文摘The problem of estimating quantization error in 2D images is an inherent problem in computer vision.The outcome of this problem is directly related to the error in reconstructed 3D position coordinates of an object.Thus estimation of quantization error has its own importance in stereo vision.Although the quantization error cannot be controlled fully,still statistical error analysis helps us to measure the performance of stereo systems that relies on the imaging parameters.Generally,it is assumed that the quantization error in 2D images is distributed uniformly that need not to be true from a practical aspect.In this paper,we have incorporated noise distributions(Triangular and Trapezoidal)for the stochastic error analysis of the quantization error in stereo imaging systems.For the validation of the theoretical analysis,the detailed simulation study is carried out by considering different cases.
基金supported by the National Basic Research Program of China(No.2010CB731805)
文摘Navigation message designing with high accuracy guarantee is the key to efficient navigation message distribution in the global navigation satellite system(GNSS). Developing high accuracy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged.The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation(ERD) to improve the existing well-known navigation message on L1 frequency(NAV) of global positioning system(GPS) for good accuracy service; a numerical analysis approximation method(NAAM) to evaluate the range error due to truncation(RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic(IGU), ERDs are generated in real time for error correction.Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.
基金supported in part by Japan Society for the Promotion of Science(JSPS)KAKENHI(No.16H04364).
文摘This paper introduces infrastructure-to-vehicle and vehicle-to-vehicle communications using VLC.A VLC coupled with a high-speed image sensor is introduced(i.e.,image sensor communication).The high-speed image sensors provide eyes for autonomous and connected vehicles.VLC imparts data reception capability to image sensors with necessary functions,which can then be provided to autonomous and connected vehicles.In this paper,some of our research on coupling VLC to high-speed image sensors is introduced,including our key findings:the basics of ISC,a vehicle motion model,and range estimation.