Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is first...Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.展开更多
Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both...Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.展开更多
The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging perfor...The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm.To overcome the above shortcomings,the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction.The expression of the optimal order of SAR range signals via FrFT is deduced in detail.The initial sample length and its constraints are proposed to obtain the best sample length of SAR range signals.Experimental results demonstrate that,when the range sampling-length changes in a certain interval,the best sampling-length will be obtained,which the best values of the range resolution,PSLR and ISLR,will be derived respectively.Compared with traditional RD algorithm,the main-lobe width of the peak-point target of the proposed algorithm is narrow in the range direction.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.展开更多
Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from...Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.展开更多
With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important fo...With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.展开更多
The linear relationship between Doppler centroid and range walking in spaceborne SAR data is analyzed, and a new method to estimate Doppler centroid is proposed, which is so called amplitude correlation method. Compar...The linear relationship between Doppler centroid and range walking in spaceborne SAR data is analyzed, and a new method to estimate Doppler centroid is proposed, which is so called amplitude correlation method. Compared with clutter-lock method which is widely used now, the new method has much less computation burden and is able to give higher estimation accuracy for a quasi-homogeneous scene or a non-homogeneous scene. This is clearly verified by the experimental results of estimating Doppler centroid for SEASAT-A raw data.展开更多
We aimed to establish gestation age specific reference intervals for Doppler indices of fetal cardiac function from 12 to 40 weeks of pregnancy. In a cross-sectional observational study of singleton pregnancies, exami...We aimed to establish gestation age specific reference intervals for Doppler indices of fetal cardiac function from 12 to 40 weeks of pregnancy. In a cross-sectional observational study of singleton pregnancies, examinations were performed in 221 women evenly distributed across each week of pregnancy. Blood flow through the four cardiac valves was examined with Doppler. For the atrioventricular valves, velocity and duration of early (E) and atrial (A) waves and the interval (a) between E/A complexes was recorded. For the outflow valves, the duration (b), peak and average velocity of flow in systole was measured. Myocardial performance index (MPI) was calculated as (a - b)/b. Outlet valve diameters were measured and cardiac outputs were calculated. Gestation age specific ranges were constructed for all these parameters. We demonstrated that the cardiac output, peak systolic and time-averaged velocity increase with advancing gestation. However the MPI and E/A ratios show little change across gestation. Fetal cardiac physiology can be studied and Doppler indices reliably measured as early as the late first trimester of pregnancy. Establishing gestation age specific ranges for various cardiac indices throughout pregnancy will help the study of development of fetal cardiac function.展开更多
Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth ...Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.展开更多
文摘Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.
文摘Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.
基金This work is supported by the 13th Five-Year Plan for Jiangsu Education Science(D/2020/01/22)JSPIGKZ and Natural Science Research Projects of Colleges and Universities in Jiangsu Province(19KJB510022)。
文摘The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm.To overcome the above shortcomings,the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction.The expression of the optimal order of SAR range signals via FrFT is deduced in detail.The initial sample length and its constraints are proposed to obtain the best sample length of SAR range signals.Experimental results demonstrate that,when the range sampling-length changes in a certain interval,the best sampling-length will be obtained,which the best values of the range resolution,PSLR and ISLR,will be derived respectively.Compared with traditional RD algorithm,the main-lobe width of the peak-point target of the proposed algorithm is narrow in the range direction.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.
基金Sponsored by the Ministerial Level Advanced Research Foundation (323010101-50)
文摘Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61875070)in part by the Science and Technology Development Plan of Jilin Province(No.20180201032GX)+1 种基金in part by the Science and Techno-logy Project of Education Department of Jilin Province(No.JJKH20190110KJ)in part by the Graduate In-novation Fund of Jilin University(No.101832020CX171).
文摘With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.
文摘The linear relationship between Doppler centroid and range walking in spaceborne SAR data is analyzed, and a new method to estimate Doppler centroid is proposed, which is so called amplitude correlation method. Compared with clutter-lock method which is widely used now, the new method has much less computation burden and is able to give higher estimation accuracy for a quasi-homogeneous scene or a non-homogeneous scene. This is clearly verified by the experimental results of estimating Doppler centroid for SEASAT-A raw data.
文摘We aimed to establish gestation age specific reference intervals for Doppler indices of fetal cardiac function from 12 to 40 weeks of pregnancy. In a cross-sectional observational study of singleton pregnancies, examinations were performed in 221 women evenly distributed across each week of pregnancy. Blood flow through the four cardiac valves was examined with Doppler. For the atrioventricular valves, velocity and duration of early (E) and atrial (A) waves and the interval (a) between E/A complexes was recorded. For the outflow valves, the duration (b), peak and average velocity of flow in systole was measured. Myocardial performance index (MPI) was calculated as (a - b)/b. Outlet valve diameters were measured and cardiac outputs were calculated. Gestation age specific ranges were constructed for all these parameters. We demonstrated that the cardiac output, peak systolic and time-averaged velocity increase with advancing gestation. However the MPI and E/A ratios show little change across gestation. Fetal cardiac physiology can be studied and Doppler indices reliably measured as early as the late first trimester of pregnancy. Establishing gestation age specific ranges for various cardiac indices throughout pregnancy will help the study of development of fetal cardiac function.
文摘Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.