This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD...This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD camera with a nanosecond-sealed gated intensifier is used as an image sensor; subsequently two high bit-depth gate images with specific range-intensity profiles are obtained to establish the gray depth map and finally the gray depth map is encoded by an equidensity pseudocolor. With this method, a color depth map is generated with higher range resolution. In our experimental work, the range resolution of the depth map is improved by a factor of 1.67.展开更多
This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate i...This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate images are obtained by speeded-up robust figures and bi-directional feature matching methods. The original mean value of the feature-pair coordinate differences is calculated. Comparing the coordinate differences with the original mean value, the wrong feature pairs are removed, and then an optimized mean value is updated. The final feature-pair coordinates are re-registered based on the updated mean value. Thus, an accurate transformation is established to rectify motion gate images for 3D reconstruction. In the experiment, a 3D image of a tower at 780 m is successfully captured by our laser gated imaging system on a pan-tilt device.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.61205019 and 61475150
文摘This Letter proposes a high bit-depth coding method to improve depth map resolution and render it suitable to human-eye observation in 3D range-intensity correlation laser imaging. In this method, a high bit-depth CCD camera with a nanosecond-sealed gated intensifier is used as an image sensor; subsequently two high bit-depth gate images with specific range-intensity profiles are obtained to establish the gray depth map and finally the gray depth map is encoded by an equidensity pseudocolor. With this method, a color depth map is generated with higher range resolution. In our experimental work, the range resolution of the depth map is improved by a factor of 1.67.
基金supported by the National Key Research and Development Program of China(No.2016YFC0500103)the Youth Innovation Promotion Association CAS(No.2017155)the Scientific Instrument Development Project from Capital Science and Technology Condition Platform(No.Z171100002817002)
文摘This Letter proposes a coordinate difference homogenization matching method to solve motion influence in three-dimensional(3D) range-intensity correlation laser imaging. Firstly, features and feature pairs of gate images are obtained by speeded-up robust figures and bi-directional feature matching methods. The original mean value of the feature-pair coordinate differences is calculated. Comparing the coordinate differences with the original mean value, the wrong feature pairs are removed, and then an optimized mean value is updated. The final feature-pair coordinates are re-registered based on the updated mean value. Thus, an accurate transformation is established to rectify motion gate images for 3D reconstruction. In the experiment, a 3D image of a tower at 780 m is successfully captured by our laser gated imaging system on a pan-tilt device.