期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanical analysis of effective pressure relief protection range of upper protective seam mining 被引量:10
1
作者 Yin Wei Miao Xiexing +1 位作者 Zhang Jixiong Zhong Sijian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期537-543,共7页
This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the develo... This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation. 展开更多
关键词 Upper protective seam Principle of pressure relief Effective protection range Gas pressure
下载PDF
The blocking effect of the sand fences quantified using wind tunnel simulations 被引量:4
2
作者 YU Yan-ping ZHANG Ke-cun +2 位作者 AN Zhi-shan WANG Tao HU Fei 《Journal of Mountain Science》 SCIE CSCD 2020年第10期2485-2496,共12页
Fences are one of the most effective measures to prevent and control wind-blown sand disasters,and the blocking effect of fences is largely determined by their porosity and height(H).This study employed wind tunnel ex... Fences are one of the most effective measures to prevent and control wind-blown sand disasters,and the blocking effect of fences is largely determined by their porosity and height(H).This study employed wind tunnel experiments to measure wind velocities on both sides of wire mesh sand fences with porosities of 75%,63%,56%,36%and heights of 10,5 and 2 cm.The effects of porosity and height on the blocking effect of the fences were evaluated on the basis of velocity variability,flow field,and the wind velocity reduction coefficient.Results show that the smaller the porosity,the stronger the blocking effect.The fence with a porosity of 36%had the strongest windproof efficiency of 0.70 and longest protection range of 9 H,and thus showed the best applicability in preventing and controlling wind-blown sand disasters.The fence with a porosity of 56%showed a windproof efficiency of 0.31 and a protection range of 7 H,which could be considered for adoption.However,fences with porosities of 75%and 63%were not recommended to be adopted,because their windproof efficiency and protection range were very small.Overall,the higher the fence,the stronger the blocking effect.The highest fence(10 cm)had the longest protection range of 90 cm,which was the best in application.Nevertheless,the 5 and 2 cm fences were almost consistent with 10 cm fence in windproof efficiency,which was still suitable for wind and sand fixation. 展开更多
关键词 Porous fence Fence height Windproof efficiency protection range Blocking effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部