In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef...In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.展开更多
This paper proposes a new sure independence screening procedure for high-dimensional survival data based on censored quantile correlation(CQC).This framework has two distinctive features:1)Via incorporating a weightin...This paper proposes a new sure independence screening procedure for high-dimensional survival data based on censored quantile correlation(CQC).This framework has two distinctive features:1)Via incorporating a weighting scheme,our metric is a natural extension of quantile correlation(QC),considered by Li(2015),to handle high-dimensional survival data;2)The proposed method not only is robust against outliers,but also can discover the nonlinear relationship between independent variables and censored dependent variable.Additionally,the proposed method enjoys the sure screening property under certain technical conditions.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors.展开更多
基金Outstanding Youth Foundation of Hunan Provincial Department of Education(Grant No.22B0911)。
文摘In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated.
基金supported by the National Natural Science Foundation of China under Grant No.11901006the Natural Science Foundation of Anhui Province under Grant Nos.1908085QA06 and 1908085MA20。
文摘This paper proposes a new sure independence screening procedure for high-dimensional survival data based on censored quantile correlation(CQC).This framework has two distinctive features:1)Via incorporating a weighting scheme,our metric is a natural extension of quantile correlation(QC),considered by Li(2015),to handle high-dimensional survival data;2)The proposed method not only is robust against outliers,but also can discover the nonlinear relationship between independent variables and censored dependent variable.Additionally,the proposed method enjoys the sure screening property under certain technical conditions.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors.