期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Resolution performance analysis of cumulants-based rank reduction estimator in presence of unexpected modeling errors
1
作者 王鼎 吴瑛 《Journal of Central South University》 SCIE EI CAS 2013年第11期3116-3130,共15页
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and... Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view. 展开更多
关键词 performance analysis rank reduction estimator (RARE) fourth-order cumulants (FOC) spatial spectrum angle resolution probability unexpected modeling errors
下载PDF
Performance of cumulant-based rank reduction estimator in presence of unexpected modeling errors
2
作者 王鼎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期992-1001,共10页
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i... Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE. 展开更多
关键词 fourth-order cumulants(FOC) rank reduction estimator(RARE) modeling error mean square error(MSE)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部