Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress for...Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.展开更多
In India,large-scale climatic oscillations have strong influences on the Indian summer monsoon rainfall(ISMR),which plays a crucial role in India’s agricultural production and economic growth.However,there are limite...In India,large-scale climatic oscillations have strong influences on the Indian summer monsoon rainfall(ISMR),which plays a crucial role in India’s agricultural production and economic growth.However,there are limited studies in India that explore the influences of decadal and multidecadal oscillations on the ISMR and associated El Niño–Southern Oscillation(ENSO).Therefore,in this study we carried out a comprehensive and detailed investigation to understand the influences of ENSO,Pacific decadal oscillation(PDO),and Atlantic multidecadal oscillation(AMO)on ISMR across different regions in India.The statistical significance of ISMR associated with different phases(positive/warm and negative/cold)of ENSO,PDO,and AMO(individual analysis),and combined ENSO–AMO,and ENSO–PDO(coupled analysis)were analysed by using the nonparametric Wilcoxon Rank Sum(WRS)test.The individual analysis results indicate that in addition to the ENSO teleconnection,AMO and PDO significantly affect the spatial patterns of ISMR.Coupled analysis was performed to understand how the phase shift of PDO and AMO has modulated the rainfall during El Niño and La Niña phases.The results indicate that the La Niña associated with a positive PDO phase caused excessive precipitation of about 21%–150%in the peninsular,west–central,and hilly regions compared to the individual effect of ENSO/PDO/AMO on ISMR;similarly,the west–central,coastal,and northwest regions received 15%–56%of excessive rainfall.Moreover,during the El Niño combined with PDO positive(AMO positive),above-normal precipitation was observed in hilly,northeast,and coastal(hilly,northeast,west–central,and coastal)regions,opposite to the results obtained from the individual ENSO analysis.This study emphasizes the importance of accounting the decadal and multidecadal forcing when examining variations in the ISMR during different phases of ENSO events.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50778057)the Research Fund for the Doctoral Program of Higher Education(Grant No.20060213002)
文摘Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.
文摘In India,large-scale climatic oscillations have strong influences on the Indian summer monsoon rainfall(ISMR),which plays a crucial role in India’s agricultural production and economic growth.However,there are limited studies in India that explore the influences of decadal and multidecadal oscillations on the ISMR and associated El Niño–Southern Oscillation(ENSO).Therefore,in this study we carried out a comprehensive and detailed investigation to understand the influences of ENSO,Pacific decadal oscillation(PDO),and Atlantic multidecadal oscillation(AMO)on ISMR across different regions in India.The statistical significance of ISMR associated with different phases(positive/warm and negative/cold)of ENSO,PDO,and AMO(individual analysis),and combined ENSO–AMO,and ENSO–PDO(coupled analysis)were analysed by using the nonparametric Wilcoxon Rank Sum(WRS)test.The individual analysis results indicate that in addition to the ENSO teleconnection,AMO and PDO significantly affect the spatial patterns of ISMR.Coupled analysis was performed to understand how the phase shift of PDO and AMO has modulated the rainfall during El Niño and La Niña phases.The results indicate that the La Niña associated with a positive PDO phase caused excessive precipitation of about 21%–150%in the peninsular,west–central,and hilly regions compared to the individual effect of ENSO/PDO/AMO on ISMR;similarly,the west–central,coastal,and northwest regions received 15%–56%of excessive rainfall.Moreover,during the El Niño combined with PDO positive(AMO positive),above-normal precipitation was observed in hilly,northeast,and coastal(hilly,northeast,west–central,and coastal)regions,opposite to the results obtained from the individual ENSO analysis.This study emphasizes the importance of accounting the decadal and multidecadal forcing when examining variations in the ISMR during different phases of ENSO events.