期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法
1
作者
郝威
刘芳
+3 位作者
王晓璐
张兆磊
许晗萌
唐进君
《北京交通大学学报》
CAS
CSCD
北大核心
2024年第4期82-92,共11页
针对传输线路故障、通信故障等原因造成智能交通系统在某时刻或时段无法识别到车辆,导致数据缺失的问题,提出一种基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法.首先,考虑交通数据的时空相关性,基于张量模型构建数据结构.其次...
针对传输线路故障、通信故障等原因造成智能交通系统在某时刻或时段无法识别到车辆,导致数据缺失的问题,提出一种基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法.首先,考虑交通数据的时空相关性,基于张量模型构建数据结构.其次,使用贝叶斯模型在张量分解的参数和超参数上设置灵活的先验和超先验分布,构建秩自适应算法解决张量分解模型的秩选择问题.最后,采用长沙市车辆牌照识别(License Plate Recognition,LPR)系统记录的2019年7月1日至2019年7月28日793个交叉路口的交通流量数据,检验在不同的张量数据结构、丢失方式、丢失率以及张量分解秩的情况下该模型的数据修复精度.研究结果表明:秩自适应算法能够捕捉张量分解最佳秩的大小,避免预设秩过大导致的过拟合现象;与传统的CP分解(CANDECOMP/PARAFAC decomposition)和均值法相比,本文所提算法的平均绝对百分比误差在丢失率达到30%的情况下降低了20%,有效提升了交通流量数据修复的准确性.研究成果可为交通流量预测、交通出行时空特征分析中的数据修复提供参考.
展开更多
关键词
智能交通
数据修复
秩自适应贝叶斯张量分解模型
车牌识别数据
下载PDF
职称材料
题名
基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法
1
作者
郝威
刘芳
王晓璐
张兆磊
许晗萌
唐进君
机构
长沙理工大学交通运输工程学院
中南大学交通运输工程学院
阿波罗智联(北京)科技有限公司
出处
《北京交通大学学报》
CAS
CSCD
北大核心
2024年第4期82-92,共11页
基金
国家重点研发计划(2022YFC3803700)。
文摘
针对传输线路故障、通信故障等原因造成智能交通系统在某时刻或时段无法识别到车辆,导致数据缺失的问题,提出一种基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法.首先,考虑交通数据的时空相关性,基于张量模型构建数据结构.其次,使用贝叶斯模型在张量分解的参数和超参数上设置灵活的先验和超先验分布,构建秩自适应算法解决张量分解模型的秩选择问题.最后,采用长沙市车辆牌照识别(License Plate Recognition,LPR)系统记录的2019年7月1日至2019年7月28日793个交叉路口的交通流量数据,检验在不同的张量数据结构、丢失方式、丢失率以及张量分解秩的情况下该模型的数据修复精度.研究结果表明:秩自适应算法能够捕捉张量分解最佳秩的大小,避免预设秩过大导致的过拟合现象;与传统的CP分解(CANDECOMP/PARAFAC decomposition)和均值法相比,本文所提算法的平均绝对百分比误差在丢失率达到30%的情况下降低了20%,有效提升了交通流量数据修复的准确性.研究成果可为交通流量预测、交通出行时空特征分析中的数据修复提供参考.
关键词
智能交通
数据修复
秩自适应贝叶斯张量分解模型
车牌识别数据
Keywords
intelligent transportation
data imputation
rank-adaptive bayesian tensor decomposition model
LPR data
分类号
U491 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于秩自适应贝叶斯张量分解模型的交通流量数据修复方法
郝威
刘芳
王晓璐
张兆磊
许晗萌
唐进君
《北京交通大学学报》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部