为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用...为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用其天线方向图的增益稳定性,作为内部源对其他矢量通道不一致性进行实时校正;然后将结合标量圆阵和快速傅里叶变换(fastFouriertransform,FFT)的快速MUSIC算法推广到矢量阵列,提出降维快速极化MUSIC算法.仿真结果验证了此误差校正方法的有效性,且快速算法在保证测角精度前提下有效提高了算法实时性.本文为极化敏感阵列测向提供了一种误差校正方法及一种快速实用的测向算法.展开更多
针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方...针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方向图数据后,将方向图数据分解并重构阵列的导向矢量矩阵,最后结合极化MUSIC算法进行波达方向(direction of arrival,DOA)和极化参数联合估计。相对于理论导向矢量的极化MUSIC算法,本文所提改进算法在解决了遮挡效应的同时具有更高的估计精度,并可有效降低运算量。仿真实验结果验证了这一结论。展开更多
文摘为解决通道不一致性对传统极化敏感阵列长矢量模型的测向精度影响及传统长矢量多重信号分类(multiple signal classification,MUSIC)算法实时性不高的问题,本文在传统极化敏感测向系统基础上,在阵列中心增加一个标量平面螺旋天线,利用其天线方向图的增益稳定性,作为内部源对其他矢量通道不一致性进行实时校正;然后将结合标量圆阵和快速傅里叶变换(fastFouriertransform,FFT)的快速MUSIC算法推广到矢量阵列,提出降维快速极化MUSIC算法.仿真结果验证了此误差校正方法的有效性,且快速算法在保证测角精度前提下有效提高了算法实时性.本文为极化敏感阵列测向提供了一种误差校正方法及一种快速实用的测向算法.
文摘针对复杂载体上共形阵列存在多极化接收和遮挡效应的问题,本文提出一种基于方向图矩阵重构导向矢量的改进极化多重信号分类(multiple signal classification,MUSIC)算法。首先对共形天线阵列进行建模,在获取各个阵元的方位和俯仰分量方向图数据后,将方向图数据分解并重构阵列的导向矢量矩阵,最后结合极化MUSIC算法进行波达方向(direction of arrival,DOA)和极化参数联合估计。相对于理论导向矢量的极化MUSIC算法,本文所提改进算法在解决了遮挡效应的同时具有更高的估计精度,并可有效降低运算量。仿真实验结果验证了这一结论。