In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mea...In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mean Squared Error (MSE) of the proposed class of estimators are obtained to first degree of approximation. It is identified that the proposed class of estimators is more efficient as compared to [1] estimator and several other estimators. A simulation study is carried out to judge the performances of the estimators.展开更多
In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an au...In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties have been derived up to first order of Taylor’s series expansion. The efficiency conditions derived theoretically under which the proposed estimator performs better than existing estimators. Empirical studies have been done using real populations to demonstrate the performance of the developed estimator in comparison with the existing estimators. The proposed estimator as illustrated by the empirical studies performs better than the existing estimators under some specified conditions i.e. it has the smallest Mean Squared Error and the highest Percentage Relative Efficiency. The developed estimator therefore is suitable to be applied to situations in which the variable of interest has a positive correlation with the auxiliary variable.展开更多
This manuscript deals with new class of almost unbiased ratio cum product estimators for the estimation of population mean of the study variable by using the known values auxiliary variable. The bias and mean squared ...This manuscript deals with new class of almost unbiased ratio cum product estimators for the estimation of population mean of the study variable by using the known values auxiliary variable. The bias and mean squared error of proposed estimators are obtained. An empirical study is carried out to assess the efficiency of proposed estimators over the existing estimators with the help of some known natural populations and it shows that the proposed estimators are almost unbiased and it perform better than the existing estimators.展开更多
文摘In this paper, we propose a class of estimators for estimating the finite population mean of the study variable under Ranked Set Sampling (RSS) when population mean of the auxiliary variable is known. The bias and Mean Squared Error (MSE) of the proposed class of estimators are obtained to first degree of approximation. It is identified that the proposed class of estimators is more efficient as compared to [1] estimator and several other estimators. A simulation study is carried out to judge the performances of the estimators.
文摘In this study we have proposed a modified ratio type estimator for population variance of the study variable y under simple random sampling without replacement making use of coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties have been derived up to first order of Taylor’s series expansion. The efficiency conditions derived theoretically under which the proposed estimator performs better than existing estimators. Empirical studies have been done using real populations to demonstrate the performance of the developed estimator in comparison with the existing estimators. The proposed estimator as illustrated by the empirical studies performs better than the existing estimators under some specified conditions i.e. it has the smallest Mean Squared Error and the highest Percentage Relative Efficiency. The developed estimator therefore is suitable to be applied to situations in which the variable of interest has a positive correlation with the auxiliary variable.
文摘This manuscript deals with new class of almost unbiased ratio cum product estimators for the estimation of population mean of the study variable by using the known values auxiliary variable. The bias and mean squared error of proposed estimators are obtained. An empirical study is carried out to assess the efficiency of proposed estimators over the existing estimators with the help of some known natural populations and it shows that the proposed estimators are almost unbiased and it perform better than the existing estimators.
基金supported by National Natural Science Foundation of China(10761004)Talent Development Foundation of Inner Mongolia(2007)+1 种基金Natural Science Foundation of Inner Mongolia(2009MS0107,2010MS0116)Higher school science and technology research project of Inner Mongolia(NJ10085)