期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
N -soliton solutions to the modified Boussinesq equation
1
作者 李琼 夏铁成 陈登远 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期497-500,共4页
Searching for exact solutions to nonlinear evolution equations is a very important and interesting work in non- linear science. In this paper, the modified Boussinesq equation is derived from the modified Gel'fand-Di... Searching for exact solutions to nonlinear evolution equations is a very important and interesting work in non- linear science. In this paper, the modified Boussinesq equation is derived from the modified Gel'fand-Dikii (raG-D) system. Furthermore, we study the modified Boussinesq equation by using the bilinear method and Wronskian technique, we obtain the N-soliton solutions to the above equation. 展开更多
关键词 raodified boussinesq equation hirota's method wronskian technique
下载PDF
KdV Equation with Self-consistent Sources in Non-uniform Media
2
作者 HAO Hong-Hai WANG Guang-Sheng ZHANG Da-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期989-999,共11页
Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isos... Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated. 展开更多
关键词 non-isospectral KdV equation with self-consistent sources gauge transformation hirota's method wronskian technique dynamics
下载PDF
一类广义Boussinesq方程的complexiton解
3
作者 苏军 徐伟 徐根玖 《纺织高校基础科学学报》 CAS 2013年第3期359-363,共5页
利用Wronskian技巧构造了一类非线性孤子方程新的形式解.首先,给出非线性广义Boussinesq方程的双线性形式,利用Wronskian技巧,构造出该非线性方程所满足的一个线性偏微分条件方程组.然后,求解该微分条件方程组,得到了广义Boussinesq方程... 利用Wronskian技巧构造了一类非线性孤子方程新的形式解.首先,给出非线性广义Boussinesq方程的双线性形式,利用Wronskian技巧,构造出该非线性方程所满足的一个线性偏微分条件方程组.然后,求解该微分条件方程组,得到了广义Boussinesq方程的Wronskian行列式解.在此基础上,根据系数矩阵的特征值类型,构造出该非线性广义Boussinesq方程的一类新的精确解即complexiton解. 展开更多
关键词 广义boussinesq方程 wronskian技巧 hirota方法 complexiton解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部