[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of...[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.展开更多
基金Supported by the Special Fund for Crop Breeding of Sichuan Provincial Department of Education,China (2006LD006)the Rapeseed Breeding Research Program of Science & Technology Department of Sichuan Province,China (2006YZGG-5-5)~~
文摘[Objective] To study the correlation between the biomechanical properties of rape stalks and rape stem lodging. [Method] Through axial compression tests to the stalks of 4 different rape varieties, the change rules of maximum stem bearing ca- pacity, maximum compressive strength, elastic modulus and moment of inertia along plant height were analyzed, as well as the effect of different varieties and water contents on the biomechanical property indices of rape stalks. [Result] The maximum loads of rape stalks presented liner decrease trend along with the increase of stem height, and all reached the maximums below the height of 50 cm. The maximum stem compressive strength and elastic modulus of the 4 varieties were increased with ascending height, but in a slow rate with small change, thus the modulus of e- lasticity could be considered as unchanged. The maximum bearing capacity, maxi- mum compressive strength and elastic modulus of dry rape stalks were higher than wet stalks, indicating that the water contents of rape stalks had significant effect on their mechanical properties. According to the actual lodging situations in filed, stalks of variety No. 1 owned the worst biomechanical properties and lodging degree, while the biomechanical properties of No. 6 and F5 were better than No. 1 and No. 9, and they also had stronger lodging-resistance. [Conclusion] The study provides parameters and bases for the design of mechanized production and mechanical deep processing of crops, and can better reveal the physical natures of organisms. The methods used in this study can also be used to screen excellent crop stalks.
文摘该研究以探索油菜秸秆厌氧消化产甲烷潜力为目的,利用一组高效纤维素分解产甲烷菌群在CSTR厌氧反应器内分解定量油菜秸秆41 d,通过监测厌氧发酵过程中的甲烷生产效率,以及纤维素酶活性等指标,评价油菜秸秆厌氧发酵产甲烷的能力。结果表明:油菜秸秆在发酵菌群的作用下能够大量产生沼气,50 g干秸秆厌氧发酵后总产气量为13 200 m L,产气效率达到264 m L/g。在发酵过程中,秸秆纤维素被有效分解,纤维素酶活性和半纤维素酶活性分别达0.63、0.81 U/m L。纤维素酶活性与沼气产量具有良好的相关性,相关性系数达到0.95,表明秸秆纤维素类厌氧发酵产沼气体系内,具有良好纤维素酶活性的菌群对甲烷生产具有重要的意义。