Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en...Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.展开更多
In order to select a suitable foliar fertilizer for Brassica napus L.at the seedling stage,using‘Fengyou 958’as the material,different foliar fertilizers including BR,Se,Si,BR+Si,BR+Se,Se+Si and BR+Se+Si were spraye...In order to select a suitable foliar fertilizer for Brassica napus L.at the seedling stage,using‘Fengyou 958’as the material,different foliar fertilizers including BR,Se,Si,BR+Si,BR+Se,Se+Si and BR+Se+Si were sprayed at the seedling stage to study their effect on the physiological characteristics,growth and yield of Brassica napus L..The results showed that the growth,chlorophyll content,soluble sugar content,soluble protein content,and yield of different treatments at the budding stage improved compared with the control.The effect of the Si+Se treatment was the best,followed by the Se and Si treatments.The chlorophyll content of the flower decreased continuously during the whole flowering period,and the chlorophyll content of the mature silique peel was higher than that of the seed.The content of soluble sugar in flowers was the highest in the early flowering stage,and the content of soluble sugar in leaves at the flowering stage was higher than that at the budding stage.The soluble sugar content in the harvested silique peel decreased gradually with the increase of time,and that in the silique peel and seed was similar at 35 d after pollination.The soluble protein content in the silique peel and seed decreased gradually at the mature stage,and the soluble protein content in the silique peel was higher than that in the seed at the same stage.Si+Se foliar fertilizer spraying at the seedling stage can promote the growth and yield of Brassica napus L.and can be applied in Brassica napus L.production.展开更多
In order to identify the molecular markers that can be widely used in the breeding of Brassica napus L.varieties with high seed oil content under different genetic backgrounds,we developed a Kompetitive Allele Specifi...In order to identify the molecular markers that can be widely used in the breeding of Brassica napus L.varieties with high seed oil content under different genetic backgrounds,we developed a Kompetitive Allele Specific PCR(KASP)marker for seed oil content on the basis of the results from available studies.The verification in the F2 population showed that the marker was closely linked to the quantitative trait locus(QTL)for oil content on chromosome A05.The findings helped to breed the‘Fengyou’varieties with high seed oil content in the middle reaches of the Yangtze River.展开更多
α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from d...α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content.Biotechnological enrichment of ALA in staple oil crops is a promising strategy.Chia(Salvia hispanica)has the highest ALA content in its seed oil among known oil crops.In this study,the FAD2 and FAD3 genes from chia were engineered into a staple oil crop,oilseed rape(Brassica napus),via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter P_(NapA).In seeds of T0,T1,and T2 lines,the average ALA contents were 20.86,23.54,and 24.92%,respectively,which were 2.21,2.68,and 3.03 folds of the non-transformed controls(9.42,8.78,and 8.22%),respectively.The highest seed ALA levels of T0,T1,and T2 plants were 38.41,35.98,and 39.19%respectively,which were 4.10-4.77 folds of the respective controls.FA-pathway enzyme genes(BnACCD,BnFATA,BnSAD,BnSCD,BnDGAT1,BnDGAT2,and BnDGAT3)and positive regulatory genes(BnWRI1,BnLEC1,BnL1L,BnLEC2,BnABI3,BnbZIP67,and BnMYB96)were all significantly up-regulated.In contrast,BnTT1,BnTT2,BnTT8,BnTT16,BnTTG1,and BnTTG2,encoding negative oil accumulation regulators but positive secondary metabolism regulators,were all significantly down-regulated.This means the foreign ShFAD2-ShFAD3 fusion gene,directly and indirectly,remodeled both positive and negative loci of the whole FA-related network in transgenic B.napus seeds.展开更多
Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known a...Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.展开更多
[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two...[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.展开更多
Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at ...Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.展开更多
[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA...[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA)contents in plant organs and xylem saps were investigated through hydroponic experiment.Four treatments including seed soaking with 0,25,50 and 75 mg/L ALA solutions(CK,A1,A2 and A3)for 6 h were set in the test.[Result] In addition to A3 treatment which made the dry weights of oilseed rape seedlings slightly decrease,after seed soaking with ALA,dry weights,net photosynthetic rate(Pn),transpiration rate(Tr)and stomatal conductance(Gs)of plants significantly increased compared with control.ABA concentrations in plant shoots and xylem saps increased in different levels after seed soaking with ALA.[Conclusion] The increasing endogenous ABA contents might be an explanation for promotion effect of ALA application on the growth of winter oilseed rape seedling.展开更多
[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ...[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.展开更多
[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional ...[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional cultivar ZS10, were compared through two field experiments. In Experiment 1, seed yield and optimum N application rate were assessed in the field with five N application treatments. In Expedment 2, N was applied uniformly at 180 kg/hm2, and plant biomass and N accumulation were measured at several developmental stages, while N use efficien- cy was calculated for rape at maturity. [Results] The experiment 1 results showed that seed yields of ZY5628 and ZY7819 were both significantly higher than that of ZS10, and compared to ZS10, optimum yield (plateau yield) was higher by 18.7% and 20.2%, while the recommended N application rate was lower by 9.5% and 9.6% for ZY5628 and ZY7819, respectively. The experiment 2 results showed that during vegetative development, all three cultivars exhibited similar accumulations of plant biomass and N, but through flowering and maturity ZY5628 and ZY7819 pro- duced more biomass, acquired more N, and utilized acquired N more efficiently to- wards seed production than ZS10. [Conclusion] With equivalent inputs, the hybrid rapeseed cultivars ZY5628 and ZY7819 tested herein yield more seed with higher N use efficiency than the conventional rapeseed ZS10. This information will be valu- able for growers seeking to improve efficiency while reducing costs of rape production in China.展开更多
Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription fact...Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription factors involved in the regulation of anthocyanin and PAs biosynthesis have been characterized in rapeseed.In this study,we identified a transcription factor gene BnbHLH92a(BnaA06T0441000ZS)in rapeseed.Overexpressing BnbHLH92a both in Arabidopsis and in rapeseed reduced levels of anthocyanin and PAs.Correspondingly,the expression profiles of anthocyanin and PA biosynthesis genes(TT3,BAN,TT8,TT18,and TTG1)were shown by quantitative real-time PCR to be inhibited in BnbHLH92a-overexpressing Arabidopsis seeds,indicating that BnbHLH92a represses the anthocyanin and PA biosynthesis pathway in Arabidopsis.BnbHLH92a physically interacts with the BnTTG1 protein and represses the biosynthesis of anthocyanins and PAs in rapeseed.BnbHLH92a also binds directly to the BnTT18 promoter and represses its expression.These results suggest that BnbHLH92a is a novel upstream regulator of flavonoid biosynthesis in B.napus.展开更多
Plant height is a key plant architectural trait that affects the seed yield,harvest index and lodging resistance in Brassica napus L.,although the genetic mechanisms affecting plant height remain unclear.Here,a semi-d...Plant height is a key plant architectural trait that affects the seed yield,harvest index and lodging resistance in Brassica napus L.,although the genetic mechanisms affecting plant height remain unclear.Here,a semi-dwarf mutant,df34,was obtained by ethyl methanesulphonate-induced mutagenesis.Genetic analysis showed that the semi-dwarf phenotype is controlled by one semi-dominant gene,which was located on chromosome C03 using a bulked segregant analysis coupled with whole-genome sequencing,and this gene was named BnaSD.C3.Then BnaSD.C3 was fine-mapped to a 297.35-kb segment of the“Darmor-bzh”genome,but there was no potential candidate gene for the semi-dwarf trait underlying this interval.Furthermore,the interval was aligned to the Zhongshuang 11 reference genome.Finally,combining structural variation analysis,transcriptome sequencing,phytohormone analyses and gene annotation information,BnaC03G0466900ZS and BnaC03G0478900ZS were determined to be the most likely candidate genes affecting the plant height of df34.This study provides a novel major locus for breeding and new insights into the genetic architecture of plant height in B.napus.展开更多
Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been ide...Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been identified,resulting in a limitation in understanding of seed weight regulation.We constructed a gene coexpression network at the early seed developmental stage using transcripts of 20,408 genes in QTL intervals and 1017 rapeseed homologs of known genes from other species.Among the 10 modules in this gene coexpression network,modules 1 and 2 were core modules and contained genes involved in source–flow–sink processes such as synthesis and transportation of fatty acid and protein,and photosynthesis.A hub gene SERINE CARBOXYPEPTIDASE-LIKE 19(SCPL19)was identified by candidate gene association analysis in rapeseed and functionally investigated using Arabidopsis T-DNA mutant and overexpression lines.Our study demonstrates the power of gene coexpression analysis to prioritize candidate genes from large candidate QTG sets and enhances the understanding of molecular mechanism for seed weight at the early developmental stage in rapeseed.展开更多
As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to h...As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified.展开更多
China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cu...China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cultivar Zhongshuang 11 (Brassica napus L.) was employed in two rounds of field experiments from 2009 to 2011. Seeds were sown with machine, three combine harvesting times namely combine harvesting A, B, and C (CHA, CHB, and CHC) were designed and manual harvesting (MH) as control was performed at maturity. The harvesting treatments were determined according to color of pod and seed in the field. Seed yield loss and quality in different treatments were evaluated. Results showed that both seed yields and harvesting losses in 2009-2010 were higher than that in 2010-2011, whereas seed oil contents in 2010-2011 were higher than that in 2009-2010. The highest yield appeared in CHB, which was significantly higher than that in MH. Furthermore, harvesting loss in CHB were 50% that in MH. Seed oil content and chlorophyll exhibited no obvious difference between CHB and MH. Economic profit analysis demonstrated that mechanical sowing/combine harvesting (MS/CH) showed an input/output ratio of 1:1.6, and it was 1:1.2 in mechanical sowing/manual harvesting (MS/MH). Labor-cost accounted for more than 70% of the total cost in MS/MH, which led to low profitability to a great extent. Our results suggested that CHB was the optimum harvesting time for winter oilseed rape along the Yangtze River.展开更多
Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germpla...Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus).展开更多
The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocophe...The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.展开更多
DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (Ec) were isolated and characterized for 30 com- mercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent muta...DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (Ec) were isolated and characterized for 30 com- mercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent mutation leading to low erucic acid trait were found, i.e., a single-base transition (eAl), a two-base deletion (ec2) and four-base deletion (eC4) as well as single-base transition with a four-base deletion (eA.). Three genotypes, i.e., eA1eA1eC2eC2, eA1eA1eC4eC4 and eA.eA.ec4ec4 were responsible for LEA content in storage Iipids of different rapeseed cultivars. Most of the LEAR cultivars had a genotype of eA1eA1ec2ec2, which were descended from the first LEAR cultivar, Oro. Yeast expression analysis revealed that two-base-pair (AA) deletion (ec2) at the base sites of 1 422-1 423 in the C genome FAE1 gene resulted in the absence of the condensing enzyme and led to the failure to produce erucic acid. Coexpression of FAE1 and ketoacyI-CoA reductase (KCR) or enoyI-CoA reductase (ECR) was found in high erucic acid rapeseed (HEAR) but not in LEAR (eA1eA1ec2ec2oreA1eA1ec4ec4). Moreover, KCR and ECR were still coordinately regulated in eA1eA1ec2ec2 or eA1eA1ec4ec4 genotypes, suggesting that the expression of two genes was tightly linked. In addition, specific detection methods were developed by high-resolution melting curve analysis in order to detect eA1 and ec4.展开更多
We have compared genetic diversity of 24 Chinese weak-winter, Swedish winter and spring B. napus accessions by inter-simple sequence repeats (ISSRs). By cluster analysis (UPGMA) based on 125 polymorphism bands amplifi...We have compared genetic diversity of 24 Chinese weak-winter, Swedish winter and spring B. napus accessions by inter-simple sequence repeats (ISSRs). By cluster analysis (UPGMA) based on 125 polymorphism bands amplified with 20 primers, the 24 accessions were divided into three groups. Six Swedish winter lines and eight Chinese weak-winter lines were in the group I and the groupⅡwere two Chinese weak-winter lines XiangyoulS and Bao81. The third group contained eight Swedish spring lines. Principal co-ordinates analysis (PCO) showed similar groupings to cluster analysis. Results from cluster analysis and PCO analysis showed very clearly that Chinese weak-winter, Swedish spring and winter accessions were distinguished from each other and Chinese weak-winter accessions in this study were genetically closer to Swedish winter accessions than to Swedish spring accessions. The Chinese weak-winter accessions had larger diversity than Swedish spring or winter accessions did. This study indicated that ISSR is a suitable and effective tool to evaluate genetic diversity among rapeseed germplasm.展开更多
The objective of this study was to determine the relationship between seed yield and other important agronomic traits of early-maturing rapeseed as a rotation crop in a double-cropping rice area using Pearson's corre...The objective of this study was to determine the relationship between seed yield and other important agronomic traits of early-maturing rapeseed as a rotation crop in a double-cropping rice area using Pearson's correlation coefficient as well as to estimate direct and indirect effects of specific yield component traits on seed yield via path analysis. Nineteen rapeseed genotypes were grown at ten environments in South China during 2008-2009 and 12 characters were evaluated. Analysis of variance showed that environment had a significant impact on all characters. For most characters the genotype by environment interaction was weak and not statistically significant. Simple correlation analysis indicated that the number of primary branches (PB), number of pods on the main raceme (PR), and number of seeds per pod made significant contributions to seed yield per plant (SYP), while 1 000-seed weight was negatively correlated with SYP (r=-0.485, P0.05). Furthermore, number of pods per plant (PP), PB, and PR had the greatest direct effects on SYP. In addition, PP and PB were the best indicators to predict seed yield in stepwise regression analysis. Finally, yield component differences between early- and medium-maturity varieties were compared; this showed that to improve the seed yield of early varieties, more emphasis should be given to increase PP, PB, and PR, and reduce plant height and shortening of growth duration in breeding practice.展开更多
基金supported by the National Natural Science Foundation of China(U21A20274,31972041)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+1 种基金Earmarked Fund for China Agriculture Research System(CARS-12)Support Enterprise Technology Innovation and Development Projects(2021BLB151)。
文摘Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.
文摘In order to select a suitable foliar fertilizer for Brassica napus L.at the seedling stage,using‘Fengyou 958’as the material,different foliar fertilizers including BR,Se,Si,BR+Si,BR+Se,Se+Si and BR+Se+Si were sprayed at the seedling stage to study their effect on the physiological characteristics,growth and yield of Brassica napus L..The results showed that the growth,chlorophyll content,soluble sugar content,soluble protein content,and yield of different treatments at the budding stage improved compared with the control.The effect of the Si+Se treatment was the best,followed by the Se and Si treatments.The chlorophyll content of the flower decreased continuously during the whole flowering period,and the chlorophyll content of the mature silique peel was higher than that of the seed.The content of soluble sugar in flowers was the highest in the early flowering stage,and the content of soluble sugar in leaves at the flowering stage was higher than that at the budding stage.The soluble sugar content in the harvested silique peel decreased gradually with the increase of time,and that in the silique peel and seed was similar at 35 d after pollination.The soluble protein content in the silique peel and seed decreased gradually at the mature stage,and the soluble protein content in the silique peel was higher than that in the seed at the same stage.Si+Se foliar fertilizer spraying at the seedling stage can promote the growth and yield of Brassica napus L.and can be applied in Brassica napus L.production.
文摘In order to identify the molecular markers that can be widely used in the breeding of Brassica napus L.varieties with high seed oil content under different genetic backgrounds,we developed a Kompetitive Allele Specific PCR(KASP)marker for seed oil content on the basis of the results from available studies.The verification in the F2 population showed that the marker was closely linked to the quantitative trait locus(QTL)for oil content on chromosome A05.The findings helped to breed the‘Fengyou’varieties with high seed oil content in the middle reaches of the Yangtze River.
基金This work was supported by the National Natural Science Foundation of China(31871549,32001441 and 32272015)the Chongqing Research Program of Basic Research and Frontier Technology,China(cstc2015jcyjBX0143)+2 种基金the Fundamental Research Funds for the Central Universities,China(XDJK2020C038)the National Key R&D Program of China(2016YFD0100506)the Young Eagles Program of Chongqing Municipal Commission of Education,China(CY220219)。
文摘α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content.Biotechnological enrichment of ALA in staple oil crops is a promising strategy.Chia(Salvia hispanica)has the highest ALA content in its seed oil among known oil crops.In this study,the FAD2 and FAD3 genes from chia were engineered into a staple oil crop,oilseed rape(Brassica napus),via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter P_(NapA).In seeds of T0,T1,and T2 lines,the average ALA contents were 20.86,23.54,and 24.92%,respectively,which were 2.21,2.68,and 3.03 folds of the non-transformed controls(9.42,8.78,and 8.22%),respectively.The highest seed ALA levels of T0,T1,and T2 plants were 38.41,35.98,and 39.19%respectively,which were 4.10-4.77 folds of the respective controls.FA-pathway enzyme genes(BnACCD,BnFATA,BnSAD,BnSCD,BnDGAT1,BnDGAT2,and BnDGAT3)and positive regulatory genes(BnWRI1,BnLEC1,BnL1L,BnLEC2,BnABI3,BnbZIP67,and BnMYB96)were all significantly up-regulated.In contrast,BnTT1,BnTT2,BnTT8,BnTT16,BnTTG1,and BnTTG2,encoding negative oil accumulation regulators but positive secondary metabolism regulators,were all significantly down-regulated.This means the foreign ShFAD2-ShFAD3 fusion gene,directly and indirectly,remodeled both positive and negative loci of the whole FA-related network in transgenic B.napus seeds.
基金supported by the Key Research and Development project of Hubei Province (Grant Nos. 2020BBB083, 2021BBA097 and 2021BBA102)the National Key Research and Development Program of China (Grant No. 2016YFD0100202)。
文摘Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.
基金Supported by the Special Funds for Modern Agricultural (oilseed rape) Technical System (MATS) of Chinathe National Natural Science Foundation of China (NSFC) (31071372)~~
文摘[Objective] The aim of this work was to analyze the N fertilization on the vegetative growth and N uptake of different winter rapeseed varieties at wintering stage. [Method] In two consecutive years (2009-2011), two winter rapeseed varieties (B. napus L.), an early maturity variety Zhongyou 116 (ZY116) and a middle-late application maturity variety Zhongyouza 12 (ZYZ12) were employed. Field experiments with different N levels (0, 90, 180, 270, 360 kg N/hm 2 ) were designed. At the wintering stage, the dry matter weight, the nitrogen content and concentration of plants, leaf nitrate reductase activity (NRA) and seed yields were investigated. [Result] The shoot dry matter of ZY116 increased rapidly when N rate ranged from 0 to 180 kg/hm 2 , and it raised slightly when N rate ranged from 180 to 360 kg/hm 2 . The shoot dry matter of ZYZ12 were changed in a single peak curve; the peak of shoot dry matter appeared at 270 kg N/hm 2 . The N concentration and N content in shoot and root increased rapidly when the N rate changed from 90 to 180 kg/hm 2 . Moreover, the N concentration and N content root of in ZYZ12 were much higher than that of ZY116. Present study revealed that the changed trend of leaf nitrate reductase activities (NRA) were significantly increased at the N rate of 180 kg/hm 2 in ZY116 and ZYZ12 compared with the N rate of 90 kg/hm 2 in two years. [Conclusion] Optimal nitrogen application significantly increased the dry weights and N uptake at wintering stage as well as increasing the yield of winter oilseed rape.
文摘Field experiments were carried out to study the effects of different nitroge- napplication rates and application times on biological traits and physiological indexes of directly-sown rapeseed (Brassica napus L.) at the seedling stage and investigate the relationship between these biological traits or physiological indexes at the seedling stage and yield, so as to provide scientific theoretical support for high yield and efficient fertilization management in production of winter rapeseed. Field trials were conducted in Chengdu plain of Sichuan Province under rice-rapeseed rotation system during the period of 2011-2012. The nitrogen application rate trial consisted of five nitrogen levels (0, 90, 180, 270 and 360 kg/hm2) and the nitrogen application time trial included NTl(single application as base fertilized), NT2 (bottom application +one time of topdressing at seedling stage) and NT3 (bottom application+two times of topdressing at seedling stage) under the same nitrogen rate (225 kg/hm2). The results indicated that compared with no nitrogen application (NO) treatment, the in- crease of nitrogen fertilizer is beneficial to the increase of biological traits including plant height, green leaf number, leaf area index and dry weight of rapeseed at the seedling stage, the improvement of physiological indexes including total nitrogen content, chlorophyll content and soluble protein content of functional leaves, and the reduction of soluble sugar content. Nitrogen rate was linearly correlated with various biological traits at the seedling stage and physiological indexes including total nitro- gen content, chlorophyll content and soluble sugar content in functional leaves over- a/I, but in parabolic correlation with soluble protein content. Under the same nitrogen rate, NT2 treatment exhibited biological traits remarkably or significantly higher than NT1 treatment and NT3 treatment. The nitrogen application times were linearly cor- related with the physiological indexes of functional leaves at the seedling stage. The various biological traits and physiological index of functional leaves at the seedlings stage were in quadratic function parabolic correlation with seed yield, and the corre- lation was significant (P〈0.05). Therefore, under the rice-rapeseed rotation system in Chengdu plain, the economic rational nitrogen rate is 180-225 kg/hm2, and the mode of bottom application + one time of topdressing (NT2) is suitable.
基金Supported by the Special Funds of Scientific and Technological Support Project of China(2009BADA8B01)Special Funds for Public Welfare Industry(Agriculture)Study of China(200903003)~~
文摘[Objective] The paper was to explore the impact of 5-aminolevunic acid(ALA)treatment on growth of winter oilseed rape(Brassica napus L.)seedlings and its mechanism.[Method] The effects of ALA on abscisic acid(ABA)contents in plant organs and xylem saps were investigated through hydroponic experiment.Four treatments including seed soaking with 0,25,50 and 75 mg/L ALA solutions(CK,A1,A2 and A3)for 6 h were set in the test.[Result] In addition to A3 treatment which made the dry weights of oilseed rape seedlings slightly decrease,after seed soaking with ALA,dry weights,net photosynthetic rate(Pn),transpiration rate(Tr)and stomatal conductance(Gs)of plants significantly increased compared with control.ABA concentrations in plant shoots and xylem saps increased in different levels after seed soaking with ALA.[Conclusion] The increasing endogenous ABA contents might be an explanation for promotion effect of ALA application on the growth of winter oilseed rape seedling.
基金Supported by Natural Science Foundation of Beijing City (4081001)National Agriculture Science and Technology Transformation FundProject (2009GB2A000001)~~
文摘[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.
基金Supported by the Central Public Interest Scientific Institution Basal Research Fund(1610172009003)the National Scientific Support Program of China(2010BAD01B05)~~
文摘[Objective] The aim of this study was to understand the difference of N fertilizer requirement between hybrid rapeseed and conventional rapeseed. [Method] Two hybrid cultivars, ZY5628 and ZY7819, and the conventional cultivar ZS10, were compared through two field experiments. In Experiment 1, seed yield and optimum N application rate were assessed in the field with five N application treatments. In Expedment 2, N was applied uniformly at 180 kg/hm2, and plant biomass and N accumulation were measured at several developmental stages, while N use efficien- cy was calculated for rape at maturity. [Results] The experiment 1 results showed that seed yields of ZY5628 and ZY7819 were both significantly higher than that of ZS10, and compared to ZS10, optimum yield (plateau yield) was higher by 18.7% and 20.2%, while the recommended N application rate was lower by 9.5% and 9.6% for ZY5628 and ZY7819, respectively. The experiment 2 results showed that during vegetative development, all three cultivars exhibited similar accumulations of plant biomass and N, but through flowering and maturity ZY5628 and ZY7819 pro- duced more biomass, acquired more N, and utilized acquired N more efficiently to- wards seed production than ZS10. [Conclusion] With equivalent inputs, the hybrid rapeseed cultivars ZY5628 and ZY7819 tested herein yield more seed with higher N use efficiency than the conventional rapeseed ZS10. This information will be valu- able for growers seeking to improve efficiency while reducing costs of rape production in China.
基金supported by the National Natural Science Foundation of China(32072093,31830067)the China Agriculture Research System of MOF and MARA,the Science and Enterprise Consortium Project of Chongqing(cqnyncw-kqlhtxm)+1 种基金the Innovation and Entrepreneurship Training Program for Undergraduates(S202010635197)the 111 Project(B12006).
文摘Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription factors involved in the regulation of anthocyanin and PAs biosynthesis have been characterized in rapeseed.In this study,we identified a transcription factor gene BnbHLH92a(BnaA06T0441000ZS)in rapeseed.Overexpressing BnbHLH92a both in Arabidopsis and in rapeseed reduced levels of anthocyanin and PAs.Correspondingly,the expression profiles of anthocyanin and PA biosynthesis genes(TT3,BAN,TT8,TT18,and TTG1)were shown by quantitative real-time PCR to be inhibited in BnbHLH92a-overexpressing Arabidopsis seeds,indicating that BnbHLH92a represses the anthocyanin and PA biosynthesis pathway in Arabidopsis.BnbHLH92a physically interacts with the BnTTG1 protein and represses the biosynthesis of anthocyanins and PAs in rapeseed.BnbHLH92a also binds directly to the BnTT18 promoter and represses its expression.These results suggest that BnbHLH92a is a novel upstream regulator of flavonoid biosynthesis in B.napus.
基金the National Natural Science Foundation of China(32172065 and 32172095)the earmarked Fund for China Agriculture Research System(CARS-12)+1 种基金the Central Public-interest Scientific Institution Basal Research Fund,China(Y2022QC21)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Plant height is a key plant architectural trait that affects the seed yield,harvest index and lodging resistance in Brassica napus L.,although the genetic mechanisms affecting plant height remain unclear.Here,a semi-dwarf mutant,df34,was obtained by ethyl methanesulphonate-induced mutagenesis.Genetic analysis showed that the semi-dwarf phenotype is controlled by one semi-dominant gene,which was located on chromosome C03 using a bulked segregant analysis coupled with whole-genome sequencing,and this gene was named BnaSD.C3.Then BnaSD.C3 was fine-mapped to a 297.35-kb segment of the“Darmor-bzh”genome,but there was no potential candidate gene for the semi-dwarf trait underlying this interval.Furthermore,the interval was aligned to the Zhongshuang 11 reference genome.Finally,combining structural variation analysis,transcriptome sequencing,phytohormone analyses and gene annotation information,BnaC03G0466900ZS and BnaC03G0478900ZS were determined to be the most likely candidate genes affecting the plant height of df34.This study provides a novel major locus for breeding and new insights into the genetic architecture of plant height in B.napus.
基金provided by the National Natural Science Foundation of China(32201776)the Natural Science Foundation of Chongqing(cstc2019jcyj-bsh X0055,cstc2019jcyj-zdxm X0012)。
文摘Seed weight is a component of seed yield in rapeseed(Brassica napus L.).Although quantitative trait loci(QTL)for seed weight have been reported in rapeseed,only a few causal quantitative trait genes(QTGs)have been identified,resulting in a limitation in understanding of seed weight regulation.We constructed a gene coexpression network at the early seed developmental stage using transcripts of 20,408 genes in QTL intervals and 1017 rapeseed homologs of known genes from other species.Among the 10 modules in this gene coexpression network,modules 1 and 2 were core modules and contained genes involved in source–flow–sink processes such as synthesis and transportation of fatty acid and protein,and photosynthesis.A hub gene SERINE CARBOXYPEPTIDASE-LIKE 19(SCPL19)was identified by candidate gene association analysis in rapeseed and functionally investigated using Arabidopsis T-DNA mutant and overexpression lines.Our study demonstrates the power of gene coexpression analysis to prioritize candidate genes from large candidate QTG sets and enhances the understanding of molecular mechanism for seed weight at the early developmental stage in rapeseed.
基金funded by the Natural Science Foundation of Zhejiang Province(LY20C130006)the National Natural Science Foundation of China(32172018)the State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products(2010DS700124-ZZ1805).
文摘As global temperature rise,the threat of heat stress to rapeseed production is becoming more obvious.Exploring the response characteristics of two important biological pathways,oil accumulation and photosynthesis,to heat stress during B.napus seed filling is helpful in the genetic improvement of heat-tolerant rapeseed.The effects of heat stress on seed oil accumulation and chlorophyll fluorescence characteristics of 29 B.napus germplasms with different oil content and environmental sensitivity,including 6 rapeseed varieties which exhibited environmentsensitive/insensitive and with high,medium or low oil content,were tested by whole plant heat stress or the in vitro silique culture system.Both assay exhibited similar trend on oil content of the rapeseed germplasms.The heat effect on the chlorophyll fluorescence kinetic parameters F_(v)/F_(m),ETR and Y(Ⅱ)were also consistent.Heat stress significantly decreased oil content,although there was abundant genetic variation on heat tolerance among the genotypes.Correlation analysis showed that the decrease rate of F_(v)/F_(m) of silique heat-stressed B.napus developing seed was positive correlative to the decrease rate of mature seed oil content of the whole plant heat-stressed rapeseed(R=0.9214,P-value<0.01).Overall,the results indicated that heat stress inhibited oil accumulation and photosynthesis in B.napus developing seed.The decrease rate of chlorophyll fluorescence parameter F_(v)/F_(m) of heat-stressed developing seed could be used as the index of heat tolerant rapeseed identification.Further,two heat insensitive rapeseed varieties with high oil content were identified.
基金supported by the Special Funding for Modern Agricultural Technical System of China (Rapeseed)the National Natural Science Foundation of China (31071372)
文摘China is one of the most important rapeseed producing countries in the world. Effective mechanical harvesting time for decreasing harvesting loss of winter oilseed rape has been becoming a critical factor. An elite cultivar Zhongshuang 11 (Brassica napus L.) was employed in two rounds of field experiments from 2009 to 2011. Seeds were sown with machine, three combine harvesting times namely combine harvesting A, B, and C (CHA, CHB, and CHC) were designed and manual harvesting (MH) as control was performed at maturity. The harvesting treatments were determined according to color of pod and seed in the field. Seed yield loss and quality in different treatments were evaluated. Results showed that both seed yields and harvesting losses in 2009-2010 were higher than that in 2010-2011, whereas seed oil contents in 2010-2011 were higher than that in 2009-2010. The highest yield appeared in CHB, which was significantly higher than that in MH. Furthermore, harvesting loss in CHB were 50% that in MH. Seed oil content and chlorophyll exhibited no obvious difference between CHB and MH. Economic profit analysis demonstrated that mechanical sowing/combine harvesting (MS/CH) showed an input/output ratio of 1:1.6, and it was 1:1.2 in mechanical sowing/manual harvesting (MS/MH). Labor-cost accounted for more than 70% of the total cost in MS/MH, which led to low profitability to a great extent. Our results suggested that CHB was the optimum harvesting time for winter oilseed rape along the Yangtze River.
基金supported by the National Key Research and Development Program of China (2017YFD0101700)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciencesthe Hubei Agricultural Science and Technology Innovation Center, China
文摘Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus).
基金supported by the National Natural Science Foundation of China (30971700 and 31171463)Natural Science Foundation of Zhejiang Province (Z3100130)
文摘The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5+ 10.5), (316.2+ 9.2), and (559.1+ 24.3) ~tg g-~ of seed meal ct-, 7-, and total (T-) tocopherol, respectively, and a 0.44+0.04 ^- to 7-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.
基金financially supported by the National Natural Science Foundation of China (30471099)the National High Technology and Development Program of China (2006AA10A113)
文摘DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (Ec) were isolated and characterized for 30 com- mercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent mutation leading to low erucic acid trait were found, i.e., a single-base transition (eAl), a two-base deletion (ec2) and four-base deletion (eC4) as well as single-base transition with a four-base deletion (eA.). Three genotypes, i.e., eA1eA1eC2eC2, eA1eA1eC4eC4 and eA.eA.ec4ec4 were responsible for LEA content in storage Iipids of different rapeseed cultivars. Most of the LEAR cultivars had a genotype of eA1eA1ec2ec2, which were descended from the first LEAR cultivar, Oro. Yeast expression analysis revealed that two-base-pair (AA) deletion (ec2) at the base sites of 1 422-1 423 in the C genome FAE1 gene resulted in the absence of the condensing enzyme and led to the failure to produce erucic acid. Coexpression of FAE1 and ketoacyI-CoA reductase (KCR) or enoyI-CoA reductase (ECR) was found in high erucic acid rapeseed (HEAR) but not in LEAR (eA1eA1ec2ec2oreA1eA1ec4ec4). Moreover, KCR and ECR were still coordinately regulated in eA1eA1ec2ec2 or eA1eA1ec4ec4 genotypes, suggesting that the expression of two genes was tightly linked. In addition, specific detection methods were developed by high-resolution melting curve analysis in order to detect eA1 and ec4.
文摘We have compared genetic diversity of 24 Chinese weak-winter, Swedish winter and spring B. napus accessions by inter-simple sequence repeats (ISSRs). By cluster analysis (UPGMA) based on 125 polymorphism bands amplified with 20 primers, the 24 accessions were divided into three groups. Six Swedish winter lines and eight Chinese weak-winter lines were in the group I and the groupⅡwere two Chinese weak-winter lines XiangyoulS and Bao81. The third group contained eight Swedish spring lines. Principal co-ordinates analysis (PCO) showed similar groupings to cluster analysis. Results from cluster analysis and PCO analysis showed very clearly that Chinese weak-winter, Swedish spring and winter accessions were distinguished from each other and Chinese weak-winter accessions in this study were genetically closer to Swedish winter accessions than to Swedish spring accessions. The Chinese weak-winter accessions had larger diversity than Swedish spring or winter accessions did. This study indicated that ISSR is a suitable and effective tool to evaluate genetic diversity among rapeseed germplasm.
基金supported by the funds from the National Key Technologies R&D Program (2009BA DA8 B01 and 2010BAD01B09)the National High-Tech R&D Program (863 Program) of China (2011AA10A104)
文摘The objective of this study was to determine the relationship between seed yield and other important agronomic traits of early-maturing rapeseed as a rotation crop in a double-cropping rice area using Pearson's correlation coefficient as well as to estimate direct and indirect effects of specific yield component traits on seed yield via path analysis. Nineteen rapeseed genotypes were grown at ten environments in South China during 2008-2009 and 12 characters were evaluated. Analysis of variance showed that environment had a significant impact on all characters. For most characters the genotype by environment interaction was weak and not statistically significant. Simple correlation analysis indicated that the number of primary branches (PB), number of pods on the main raceme (PR), and number of seeds per pod made significant contributions to seed yield per plant (SYP), while 1 000-seed weight was negatively correlated with SYP (r=-0.485, P0.05). Furthermore, number of pods per plant (PP), PB, and PR had the greatest direct effects on SYP. In addition, PP and PB were the best indicators to predict seed yield in stepwise regression analysis. Finally, yield component differences between early- and medium-maturity varieties were compared; this showed that to improve the seed yield of early varieties, more emphasis should be given to increase PP, PB, and PR, and reduce plant height and shortening of growth duration in breeding practice.