To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. E...To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.展开更多
文摘To optimize the leek peeling performance, a new nozzle has been developed in which the nozzle has a design Mach number of 1.68, an inner diameter of 2.0 mm at the throat, and an inner diameter of 2.3 mm at the exit. Experiments have been conducted over a range of nozzle pressure ratios from 3.0 to 6.0. Flow field issued from the new nozzle is quantitatively visualized by the rainbow schlieren deflectometry and compared with that from a conventional nozzle. Density fields in the free jets are reconstructed by the Abel inversion method for the schlieren images with the horizontal rainbow filter. The density values at the exit of the conventional nozzle obtained by the rainbow schlieren are compared with the analytical results by the flow model proposed in the past. In addition, Pitot probe surveys along the jet centerline were made to obtain the impact pressure distributions. The Mach number and velocity distributions along the jet centerline are obtained from a combination of the density and Pitot pressure data to clarify the fundamental flow structure of leek peeler nozzle jets.