期刊文献+
共找到11,809篇文章
< 1 2 250 >
每页显示 20 50 100
Landscape of Sequence Variations in Homologous Copies of FAD2 and FAD3 in Rapeseed(Brassica napus L.)Germplasm with High/Low Linolenic Acid Trait
1
作者 Haoxue Wu Xiaohan Zhang +5 位作者 Xiaoyu Chen Kang Li Aixia Xu Zhen Huang Jungang Dong Chengyu Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期627-640,共14页
Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har... Genetic manipulation(either restraint or enhancement)of the biosynthesis pathway ofα-linolenic acid(ALA)in seed oil is an important goal in Brassica napus breeding.B.napus is a tetraploid plant whose genome often har-bors four and six homologous copies,respectively,of the two fatty acid desaturases FAD2 and FAD3,which con-trol the last two steps of ALA biosynthesis during seed oil accumulation.In this study,we compared their promoters,coding sequences,and expression levels in three high-ALA inbred lines 2006L,R8Q10,and YH25005,a low-ALA line A28,a low-ALA/high-oleic-acid accession SW,and the wildtype ZS11.The expression levels of most FAD2 and FAD3 homologs in the three high-ALA accessions were higher than those in ZS11 and much higher than those in A28 and SW.The three high-ALA accessions shared similar sequences with the pro-moters and CDSs of BnFAD3.C4 and BnFAD3.A3.In A28 and SW,substitution of three amino acid residues in BnFAD2.A5 and BnFAD2.C5,an absence of BnFAD2.C1 locus,and a 549 bp long deletion on the BnFAD3.A3 promoter were detected.The profile of BnFAD2 mutation in the two low-ALA accessions A28 and SW is different from that reported in previous studies.The mutations in BnFAD3 in the high-ALA accessions are reported for thefirst time.In identifying the sites of these mutations,we provide detailed information to aid the design of mole-cular markers for accelerated breeding schemes. 展开更多
关键词 brassica napus linolenic acid FAD2 FAD3 promoter coding sequences mutation
下载PDF
Influence of two-stage harvesting on the properties of cold-pressed rapeseed(Brassica napus L.)oils 被引量:3
2
作者 NING Ning HU Bing +8 位作者 BAI Chen-yang LI Xiao-hua KUAI Jie HE Han-zi REN Yi-lin WANG Bo JIA Cai-hua ZHOU Guang-sheng ZHAO Si-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期265-278,共14页
Rapeseed(Brassica napus L.)harvesting method is critical since it significantly determines the seed yield,oil quality,and industrial efficiency.This study investigated the influences of harvesting methods on the quali... Rapeseed(Brassica napus L.)harvesting method is critical since it significantly determines the seed yield,oil quality,and industrial efficiency.This study investigated the influences of harvesting methods on the quality of cold-pressed rapeseed oil of two varieties.Oil color,peroxide value(POV),tocopherol content,fatty acid composition,and polarity of total polyphenols(PTP)contents of two rapeseed varieties in Huanggang and Xiangyang were compared through artificially simulated combined harvesting and two-stage harvesting.Results showed significant differences in the quality of rapeseed oil between the two harvesting methods.The red value(R-value),POV,total tocopherol contents,linoleic and linolenic acid content,and PTP content of the pressed rapeseed oil prepared by the combined harvesting method were about 27.6,5.7,15.8,2.0,0.5,and 28.6%lower than those of the oil produced from the two-stage harvesting method,respectively.Xiangyang and Huayouza62 performed better in the two regions and two varieties,respectively.To sum up,the rapeseed oil obtained 41–44 days after final flowering of combined harvesting,35 days after final flowering,and six days of post-ripening of the two-stage harvesting had the best quality. 展开更多
关键词 rapeseed two-stage harvesting combined harvesting oil quality
下载PDF
Genome-wide and transcriptome-wide identification of the APX gene family in rapeseed (Brassica napus L.) and their expression features under low temperature stress
3
作者 Xuan Sun Guomei Liu +1 位作者 Lin Yao Chunfang Du 《Oil Crop Science》 CSCD 2023年第4期259-265,共7页
Ascorbate peroxidase(APX)is a crucial H2O2 scavenger that utilizes ascorbic acid as an electron donor and plays a significant role in plant stress resistance.This study aims to identify and characterize the Brassica n... Ascorbate peroxidase(APX)is a crucial H2O2 scavenger that utilizes ascorbic acid as an electron donor and plays a significant role in plant stress resistance.This study aims to identify and characterize the Brassica napus L.APX gene family through genome and transcriptome sequencing,while also revealing their expression profile under low-temperature stress via transcriptome and proteome analysis.The results indicate the presence of 18 genes with three different conserved domains distributed in Brassica napus L.,which can be classified into three major branches based on phylogenetic analysis.Eleven members were predicted to have the low-temperature response component(LTR).Most APX genes exhibit up-regulated transcriptional expression under low temperature stress,particularly APX2,APX4,APX12,and APX18.In terms of proteomics data,only six members(APX2,APX4,APX8,APX12,APX17,and APX18)showed temporal specificity in their expression patterns.Therefore,this study provides valuable insights into the complexity of the APX family in the functional characterization of its genes for future research. 展开更多
关键词 brassica napus Low-temperature stress APX Bioinformatics
下载PDF
Molecular mechanism of flowering time regulation in Brassica rapa:similarities and differences with Arabidopsis
4
作者 Na Li Rui Yang +1 位作者 Shuxing Shen Jianjun Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期615-628,共14页
Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates envi... Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates environmental signals and internal conditions to ensure that flowering takes place under favorable conditions.Brassica rapa is a diploid Cruciferae species that includes several varieties that are cultivated as vegetable or oil crops.Flowering time is one of the most important agricultural traits of B.rapa crops because of its influence on yield and quality.The transition to flowering in B.rapa is regulated by several environmental and developmental cues,which are perceived by several signaling pathways,including the vernalization pathway,the autonomous pathway,the circadian clock,the thermosensory pathway,and gibberellin(GA)signaling.These signals are integrated to control the expression of floral integrators BrFTs and BrSOC1s to regulate flowering.In this review,we summarized current research advances on the molecular mechanisms that govern flowering time regulation in B.rapa and compare this to what is known in Arabidopsis. 展开更多
关键词 Flowering time brassica rapa VERNALIZATION PHOTOPERIOD
下载PDF
A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed
5
作者 Qianwei zhang Yuanyi Mao +11 位作者 Zikun Zhao Xin Hu Ran Hu Nengwen Yin Xue Sun Fujun Sun Si Chen Yuxiang jiang Liezhao Liu Kun Lu Jiana Li Yu Pan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1481-1493,共13页
Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golde... Enhancing photosynthetic efficiency is a major goal for improving crop yields under agricultural field conditions and is associated with chloroplast biosynthesis and development.In this study,we demonstrate that Golden2-like 1a(BnGLK1a)plays an important role in regulating chloroplast development and photosynthetic efficiency.Overexpressing BnGLK1a resulted in significant increases in chlorophyll content,the number of thylakoid membrane layers and photosynthetic efficiency in Brassica napus,while knocking down BnGLK1a transcript levels through RNA interference(RNAi)had the opposite effects.A yeast two-hybrid screen revealed that BnGLK1a interacts with the abscisic acid receptor PYRABACTIN RESISTANCE 1-LIKE 1-2(BnPYL1-2)and CONSTITUTIVE PHOTOMORPHOGENIC 9 SIGNALOSOME 5A subunit(BnCSN5A),which play essential roles in regulating chloroplast development and photosynthesis.Consistent with this,BnGLK1a-RNAi lines of B.napus display hypersensitivity to the abscisic acid(ABA)response.Importantly,overexpression of BnGLK1a resulted in a 10%increase in thousand-seed weight,whereas seeds from BnGLK1a-RNAi lines were 16%lighter than wild type.We propose that BnGLK1a could be a potential target in breeding for improving rapeseed productivity.Our results not only provide insights into the mechanisms of BnGLK1a function,but also offer a potential approach for improving the productivity of Brassica species. 展开更多
关键词 brassica napus BnGLK1a chloroplast development photosynthetic efficiency YIELD
下载PDF
Utilizing resequencing big data to facilitate Brassica vegetable breeding:tracing introgression pedigree and developing highly specific markers for clubroot resistance
6
作者 Zhiyong Ren Jinquan Li +5 位作者 Xingyu Zhang Xingxu Li Junhong Zhang Zhibiao Ye Yuyang Zhang Qijun Nie 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期771-783,共13页
Clubroot caused by Plasmodiophora brassicae is a devastating disease of Cruciferous crops.Developing cultivars with clubroot resistance(CR)is the most effective control measure.For the two major Brassica vegetable spe... Clubroot caused by Plasmodiophora brassicae is a devastating disease of Cruciferous crops.Developing cultivars with clubroot resistance(CR)is the most effective control measure.For the two major Brassica vegetable species B.rapa and B.oleracea,several commercial cultivars with unclear CR pedigrees have been intensively used as CR donors in breeding.However,the continuous occurrence of CR-breaking makes the CR pedigree underlying these cultivars one of the breeders'most urgent concerns.The complex intraspecific diversity of these two major Brassica vegetables has also limited the applicability of CR markers in different breeding programs.Here we first traced the pedigree underlying two kinds of CR that have been widely applied in breeding by linkage and introgression analyses based on public resequencing data.In B.rapa,a major locus CRzi8 underlying the CR of the commercial CR donor‘DegaoCR117’was identified.CRzi8 was further shown to have been introgressed from turnip(B.rapa ssp.rapifera)and that it carried a potential functional allele of Crr1a.The turnip introgression carried CRb^(c),sharing the same coding sequence with the CRb that was also identified from chromosome C07 of B.oleracea CR cultivars with different morphotypes.Within natural populations,variation analysis of linkage intervals of CRzi8,PbBa8.1,CRb,and CRb^(c)yielded easily resolved InDel markers(>20 bp)for these fundamental CR genes.The specificity of these markers was tested in diverse cultivars panels,and each exhibited high reliability in breeding.Our research demonstrates the value of the practice of applying resequencing big data to solve urgent concerns in breeding programs. 展开更多
关键词 brassica Clubroot resistance RESEQUENCING Introgression analysis Molecular marker
下载PDF
BnaWRKY75 positively regulates the resistance against Sclerotinia sclerotiorum in ornamental Brassica napus
7
作者 Kexin Yu Yijie Zhang +4 位作者 Xiaoyuan Fei Luyue Ma Rehman Sarwar Xiaoli Tan Zheng Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期784-796,共13页
With the development of tourism at home and abroad,Rapeseed(Brassica napus)has become an important ornamental plant.However,its ornamental value at the inflorescence stage is greatly reduced by Sclerotinia sclerotioru... With the development of tourism at home and abroad,Rapeseed(Brassica napus)has become an important ornamental plant.However,its ornamental value at the inflorescence stage is greatly reduced by Sclerotinia sclerotiorum.Identification of important genes in the defense responses is critical for molecular breeding,which is an important strategy for controlling the disease.In this study,we isolated a B.napus WRKY transcription factor gene,BnaWRKY75.BnaWRKY75 was found to encode a nucleus-localized protein and exhibited relatively high expression in the stems.Arabidopsis thaliana transgenic plants expressing BnaWRKY75 showed enhanced resistance to S.sclerotiorum,and both ProBnaWRKY75:GUS and gene expression analyses showed that BnaWRKY75 was highly responsive to S.sclerotiorum infection,indicating the involvement of BnaWRKY75 in response to this infection.Furthermore,overexpression(OE)of BnaWRKY75 in B.napus significantly enhanced the resistance to S.sclerotiorum,whereas the resistance was reduced in RNAi transgenic B.napus plants.Moreover,the BnaWRKY75-OE B.napus plants exhibited constitutive activation of salicylic acid-,jasmonic acid-,and ethylene-mediated defense responses and the inhibition of both H_(2)O_(2)and O_(2)·^(-)accumulation in response to this pathogen.By contrast,BnaWRKY75-RNAi plants showed a reverse pattern,suggesting that BnaWRKY75 is involved in hormonal signaling pathways and in the control of reactive oxygen species accumulation.In conclusion,these data indicate that BnaWRKY75,a regulator of multiple defense responses,positively regulates resistance against S.sclerotiorum,which may guide the improvement of resistance in rapeseed. 展开更多
关键词 brassica napus BnaWRKY75 Defense response Sclerotinia sclerotiorum
下载PDF
Improved genome annotation of Brassica oleracea highlights the importance of alternative splicing
8
作者 Yinqing Yang Lei Zhang +7 位作者 Qi Tang Lingkui Zhang Xing Li Shumin Chen Kang Zhang Ying Li Xilin Hou Feng Cheng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期961-970,共10页
Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha... Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms. 展开更多
关键词 brassica oleracea Oxford nanopore technologies Gene annotation Alternative splicing
下载PDF
Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus
9
作者 Jianjun Wang Yanan Shao +4 位作者 Xin Yang Chi Zhang Yuan Guo Zijin Liu Mingxun Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1864-1878,共15页
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi... Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation. 展开更多
关键词 LuSAD oleic acid cold tolerance drought tolerance Linum usitatissimum brassica napus
下载PDF
Turnip mosaic virus pathogenesis and host resistance mechanisms in Brassica
10
作者 Guanwei Wu Xinxin Fang +2 位作者 Tianqi Yu Jianping Chen Fei Yan 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期947-960,共14页
Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the... Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops. 展开更多
关键词 Turnip mosaic virus brassica Resistance genes Host factors Infection biology
下载PDF
Identification and virulence test of a new pathogen that causes verticillium striping on rapeseed in northwestern China
11
作者 We Si Ruisheng Wang +3 位作者 Mingde Wu Long Yang Guoqing Li Jing Zhang 《Oil Crop Science》 CSCD 2024年第1期8-19,共12页
Five stems of rapeseed with abundant black microsclerotia were collected from Huangyuan County of Qinghai Province,China,and fungal isolates were obtained from the stems.They were identified based on morphology,molecu... Five stems of rapeseed with abundant black microsclerotia were collected from Huangyuan County of Qinghai Province,China,and fungal isolates were obtained from the stems.They were identified based on morphology,molecular features and specific PCR detection.The results showed that the 10 fungal isolates belonged to Verticillium longisporum lineage A1/D3.One of the 10 isolates(HW7-1)was tested for virulence on three species of rapeseed,including B.napus Zhongshuang 9,B.rapa Qingyou 9 and B.juncea Tayou 2 by conidia inoculation of HW7-1 on roots of young seedlings.Control seedlings were inoculated with V.dahliae conidia or water alone.The seedlings of these treatments were transplanted in culture mix and incubated in a growth chamber(20℃).Results suggested that the control seedlings of three cultivars appeared quite healthy,while the seedlings inoculated with HW7-1 turned yellowing leaves,seedling stunting or even death after 22 days post-inoculation.V.longisporum was re-isolated from he yellow leaves,thus fulfilling Koch's postulates.Moreover,compared to the control treatments,inoculation with HW7-1 caused flowering delay and seed yield reduction on Tayou 2 with production of microsclerotia on the stems.To our knowledge,this is the first report of V.longisporum lineage A1/D3 on rapeseed in northwestern China. 展开更多
关键词 Verticillium longisporum lineage A1/D3 VIRULENCE rapeseed China
下载PDF
The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.:changes in the nutritional constituents,bioactivities and bioaccessibility
12
作者 Wen Wang Zhixiong He +3 位作者 Ruiying Zhang Min Li Zhenxia Xu Xia Xiang 《Oil Crop Science》 CSCD 2024年第2期81-90,共10页
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en... Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods. 展开更多
关键词 Se-enriched brassica napus L. FERMENTATION Antioxidant activity Inhibitory activity BIOACCESSIBILITY
下载PDF
Editing of eIF(iso)4E.c confers resistance against Turnip mosaic virus in Brassica rapa
13
作者 Yujia Liu Xiaoyun Xin +9 位作者 Peirong Li Weihong Wang Yangjun Yu Xiuyun Zhao Deshuang Zhang Jiao Wang Fenglan Zhang Shujiang Zhang Shuancang Yu Tongbing Su 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期1020-1034,共15页
Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated t... Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV. 展开更多
关键词 brassica rapa eIF(iso)4E.c TUMV Ribo-seq
下载PDF
Knock-out of BnHva22c reduces the susceptibility of Brassica napus to infection with the fungal pathogen Verticillium longisporum
14
作者 Wanzhi Ye Roxana Hossain +6 位作者 Michael Prbsting Abdallah Abdelmegid Mohamed Ali Lingyue Han Ying Miao Steffen Rietz Daguang Cai Dirk Schenke 《The Crop Journal》 SCIE CSCD 2024年第2期503-514,共12页
Verticillium longisporum(Vl43)is a soilborne hemibiotrophic fungal pathogen causing stem striping on oilseed rape(OSR)and severe yield losses.Breeding for resistant varieties is the most promising approach to control ... Verticillium longisporum(Vl43)is a soilborne hemibiotrophic fungal pathogen causing stem striping on oilseed rape(OSR)and severe yield losses.Breeding for resistant varieties is the most promising approach to control this disease.Here,we report the identification of Hva22c as a novel susceptibility factor and its potential for improving OSR resistance.Hva22c is a member of the Hva22 gene family,originally described for barley(Hordeum vulgare).Several Hva22 members have been located at the endoplasmic reticulum.Hva22c is up-regulated in response to Vl43 in both Arabidopsis and OSR.We demonstrate that knock-out of Hva22c in OSR by CRISPR/Cas9 and its homolog in Arabidopsis by T-DNA insertion reduced plants’susceptibility to Vl43 infection and impaired the development of disease symptoms.To understand the underlying mechanism,we analysed transcriptomic data from infected and non-infected roots of hva22c knock-out and wild type plants.We identified a homozygous mutant with frame-shifts in all four BnHva22c loci displaying a vastly altered transcriptional landscape at 6 dpi.Significantly,a large set of genes was suppressed under mock conditions including genes related to the endomembrane systems.Among the up-regulated genes we found several defense-related and phytohormone-responsive genes when comparing mutant to the wild type.These results demonstrate that Hva22c is functionally required for a fully compatible plant-fungus interaction.Its loss of function reduces plant susceptibility,most likely due to endoplasmatic reticulum and Golgi dysfunction accompanied by additionally activated defense responses.These findings can help improve OSR resistance to V.longisporum infection. 展开更多
关键词 Hva22c Susceptibility factor CRISPR/Cas9 brassica napus ARABIDOPSIS Verticillium longisporum Resistance breeding
下载PDF
油菜(Brassica napus)β-1,4-木糖基转移酶基因BnIRX14克隆、序列分析及亚细胞定位
15
作者 董云 吴旺泽 +5 位作者 靳丰蔚 方彦 刘婷婷 王毅 徐一涌 杨晓明 《西北农业学报》 CAS CSCD 北大核心 2023年第2期222-231,共10页
糖基转移酶(Glycosyltransferase,GTs)广泛参与植物次生物质的代谢及生物和非生物胁迫,β-1,4-木糖基转移酶属于糖基转移酶GT43家族成员。为了探究油菜β-1,4-木糖基转移酶对油菜次生物质的代谢和逆境调控,利用5′RACE和3′RACE方法从... 糖基转移酶(Glycosyltransferase,GTs)广泛参与植物次生物质的代谢及生物和非生物胁迫,β-1,4-木糖基转移酶属于糖基转移酶GT43家族成员。为了探究油菜β-1,4-木糖基转移酶对油菜次生物质的代谢和逆境调控,利用5′RACE和3′RACE方法从甘蓝型油菜中扩增获得油菜β-1,4-木糖基转移酶基因BnIRX14全长cDNA,该cDNA具有1566 bp的完整开放阅读框,编码522个氨基酸,分子质量约58.92 ku,由8315个原子组成,分子式为C_(2631)H_(4168)N_(742)O_(753)S_(21),具有多个磷酸化位点和糖基化修饰位点,属非分泌性单次跨膜蛋白。结构域分析表明,BnIRX14具有GTs家族保守的DxD保守结构域和UGT糖基转移酶PSPG特征结构域,属于糖基转移酶GT43家族成员。BiFC亚细胞定位初步显示BnIRX14定位于细胞质中,蛋白互作预测表明BnIRX14与各类糖合成和转运蛋白高度互作。结构域预测和互作分析初步表明,BnIRX14属于油菜糖基转移酶GT43家族成员,可能通过与糖合成和转运相关蛋白互作参与油菜木糖的合成代谢进而参与生长发育及逆境响应。 展开更多
关键词 β-1 4-木糖基转移酶 甘蓝型油菜(brassica napa L.) 生物信息学 亚细胞定位
下载PDF
Physiological and molecular responses to cold stress in rapeseed(Brassica napus L.) 被引量:9
16
作者 YAN Lei Tariq Shah +3 位作者 CHENG Yong Lü Yan ZHANG Xue-kun ZOU Xi-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2742-2752,共11页
Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germpla... Low temperature is one of the most important abiotic factors inhibiting growth, productivity, and distribution of rapeseed(Brassica napus L.). Therefore, it is important to identify and cultivate cold-tolerant germplasm. The objective of this study was to figure out the mechanism of chilling(4 and 2°C) and freezing(–2 and –4°C) stresses along with a control(22°C) in B. napus cultivars(1801 and C20) under controlled environment(growth chamber). The experiment was arranged in a complete randomized design with three replications. Our results exhibited that under chilling and freezing stresses, the increment of proline accumulation, soluble sugar and protein contents, and antioxidant enzyme activity were enhanced more in 1801 cultivar compared with C20 cultivar. At –2 and –4°C, the seedlings of C20 cultivar died completely compared with 1801 cultivar. Hydrogen peroxide(H2 O2) and malondialdehyde contents(MDA) increased in both cultivars, but when the temperature was decreased up to –2 and –4°C, the MDA and H2 O2 contents continuously dropped in 1801 cultivar. Moreover, we found that leaf abscisic acid(ABA) was enhanced in 1801 cultivar under chilling and freezing stresses. Additionally, the transcriptional regulations of cold-tolerant genes(COLD1, CBF4, COR6.6, COR15, and COR25) were also determined using real-time quantitative PCR(RT-q PCR). RT-q PCR showed that higher expression of these genes were found in 1801 as compared to C20 under cold stress(chilling and freezing stresses). Therefore, it is concluded from this experiment that 1801 cultivar has a higher ability to respond to cold stress(chilling and freezing stresses) by maintaining hormonal, antioxidative, and osmotic activity along with gene transcription process than C20. The result of this study will provide a solid foundation for understanding physiological and molecular mechanisms of cold stress signaling in rapeseed(B. napus). 展开更多
关键词 brassica NAPUS L. cold stress MORPHOLOGICAL features molecular regulation PHYSIOLOGICAL INDICATORS
下载PDF
Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed(Brassica napus L.) seedlings 被引量:12
17
作者 ZENG Liu CAI Jun-song +8 位作者 LI Jing-jing LU Guang-yuan LI Chun-sheng FU Gui-ping ZHANG Xue-kun MA Hai-qing LIU Qing-yun ZOU Xi-ling CHENG Yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期328-335,共8页
Melatonin is a naturally occurring compound in plants. Here, we tested the effect of exogenous melatonin on rapeseed(Brassica napus L.) grown under salt stress. Application of 30 μmol L^-1 melatonin alleviated salt... Melatonin is a naturally occurring compound in plants. Here, we tested the effect of exogenous melatonin on rapeseed(Brassica napus L.) grown under salt stress. Application of 30 μmol L^-1 melatonin alleviated salt-induced growth inhibition, and the shoot fresh weight, the shoot dry weight, the root fresh weight, and the root dry weight of seedlings treated with exogenous melatonin increased by 128.2, 142.9, 122.2, and 124.2%, respectively, compared to those under salt stress. In addition, several physiological parameters were evaluated. The activities of antioxidant enzymes including peroxidase(POD), catalase(CAT) and ascorbate peroxidase(APX) were enhanced by 16.5, 19.3, and 14.2% compared to their activities in plants without exogenous melatonin application under salt stress, while the H2O2 content was decreased by 11.2% by exogenous melatonin. Furthermore, melatonin treatment promoted solute accumulation by increasing the contents of proline(26.8%), soluble sugars(15.1%) and proteins(58.8%). The results also suggested that higher concentrations(〉50 μmol L^-1) of melatonin could attenuate or even prevent the beneficial effects on seedling development. In conclusion, application of a low concentration of exogenous melatonin to rapeseed plants under salt stress can improve the H2O2-scavenging capacity by enhancing the activities of antioxidant enzymes such as POD, CAT and APX, and can also alleviate osmotic stress by promoting the accumulation of osmoregulatory substances such as soluble proteins, proline, and water soluble glucan. Ultimately, exogenous melatonin facilitates root development and improves the biomass of rapeseed seedlings grown under salt stress, thereby effectively alleviating the damage of salt stress in rapeseed seedlings. 展开更多
关键词 melatonin rapeseedbrassica napus L.) salt seedlings
下载PDF
Molecular evidence for blocking erucic acid synthesis in rapeseed(Brassica napus L.) by a two-base-pair deletion in FAE1(fatty acid elongase 1) 被引量:5
18
作者 WU Lei JIA Yan-li +1 位作者 WU Gang LU Chang-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1251-1260,共10页
DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (Ec) were isolated and characterized for 30 com- mercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent muta... DNA sequences of fatty acid elongase 1 genes FAE1.1 (EA) and FAE1.2 (Ec) were isolated and characterized for 30 com- mercialized low erucic acid rapeseed (LEAR) cultivars in China. Four types of independent mutation leading to low erucic acid trait were found, i.e., a single-base transition (eAl), a two-base deletion (ec2) and four-base deletion (eC4) as well as single-base transition with a four-base deletion (eA.). Three genotypes, i.e., eA1eA1eC2eC2, eA1eA1eC4eC4 and eA.eA.ec4ec4 were responsible for LEA content in storage Iipids of different rapeseed cultivars. Most of the LEAR cultivars had a genotype of eA1eA1ec2ec2, which were descended from the first LEAR cultivar, Oro. Yeast expression analysis revealed that two-base-pair (AA) deletion (ec2) at the base sites of 1 422-1 423 in the C genome FAE1 gene resulted in the absence of the condensing enzyme and led to the failure to produce erucic acid. Coexpression of FAE1 and ketoacyI-CoA reductase (KCR) or enoyI-CoA reductase (ECR) was found in high erucic acid rapeseed (HEAR) but not in LEAR (eA1eA1ec2ec2oreA1eA1ec4ec4). Moreover, KCR and ECR were still coordinately regulated in eA1eA1ec2ec2 or eA1eA1ec4ec4 genotypes, suggesting that the expression of two genes was tightly linked. In addition, specific detection methods were developed by high-resolution melting curve analysis in order to detect eA1 and ec4. 展开更多
关键词 erucic acid fatty acid elongase 1 natural mutation brassica napus L.
下载PDF
Abortive Process of a Novel Rapeseed Cytoplasmic Male Sterility Line Derived from Somatic Hybrids Between Brassica napus and Sinapis alba 被引量:5
19
作者 WANG Juan GAO Ya-nan +4 位作者 KONG Yue-qin JIANG Jin-jin LI Ai-min ZHANG Yong-tai WANG You-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期741-748,共8页
Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to... Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to the counterpart of receptor or production of new sterile genes caused by mitochondrial genome recombination of the biparent during protoplast fusion. In this study, a novel male sterile line, SaNa-IA, was obtained from the somatic hybridization between Brassica napus and Sinapis alba. The normal anther development of the maintainer line, SaNa-IB, and the abortive process of SaNa-IA were described through phenotypic observations and microtome sections. The floral organ of the sterile line SaNa-IA was sterile with a shortened filament and deflated anther. No detectable pollen grains were found on the surface of the sterile anthers. Semi-thin sections indicated that SaNa-IA aborted in the pollen mother cell (PMC) stage when vacuolization of the tapetum and PMCs began. The tapetum radically elongated and became highly vacuolated, occupying the entire locule together with the vacuolated microspores. Therefore, SaNa-IA is different from other CMS lines, such as ogu CMS, pol CMS and nap CMS as shown by the abortive process of the anther. 展开更多
关键词 brassica napus anther abortion cytoplasmic male sterility (CMS) semi-thin sections somatic hybridization
下载PDF
Genetic Diversity of Chinese and Swedish Rapeseed (Brassica napus L.) Analyzed by Inter-Simple Sequence Repeats (ISSRs) 被引量:6
20
作者 MAChao-zhi StineTuevesson 《Agricultural Sciences in China》 CAS CSCD 2003年第2期137-143,共7页
We have compared genetic diversity of 24 Chinese weak-winter, Swedish winter and spring B. napus accessions by inter-simple sequence repeats (ISSRs). By cluster analysis (UPGMA) based on 125 polymorphism bands amplifi... We have compared genetic diversity of 24 Chinese weak-winter, Swedish winter and spring B. napus accessions by inter-simple sequence repeats (ISSRs). By cluster analysis (UPGMA) based on 125 polymorphism bands amplified with 20 primers, the 24 accessions were divided into three groups. Six Swedish winter lines and eight Chinese weak-winter lines were in the group I and the groupⅡwere two Chinese weak-winter lines XiangyoulS and Bao81. The third group contained eight Swedish spring lines. Principal co-ordinates analysis (PCO) showed similar groupings to cluster analysis. Results from cluster analysis and PCO analysis showed very clearly that Chinese weak-winter, Swedish spring and winter accessions were distinguished from each other and Chinese weak-winter accessions in this study were genetically closer to Swedish winter accessions than to Swedish spring accessions. The Chinese weak-winter accessions had larger diversity than Swedish spring or winter accessions did. This study indicated that ISSR is a suitable and effective tool to evaluate genetic diversity among rapeseed germplasm. 展开更多
关键词 brassica napus L. Genetic diversity Inter-simple sequence repeats (ISSRs)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部