HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mam- malian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial ho- meostasis. PDZ dom...HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mam- malian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial ho- meostasis. PDZ domain is one of the most important protein-protein interaction modules and is in- volved in a variety of important cellular functions, such as signal transduction, degradation of proteins, and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding proper- ties of HtrA2/Omi PDZ domain. Besides the reported Class II PDZ motif, it also binds to Class I and Class III motifs, and exhibits restricted variability at P?3, which means that the P?3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi. Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.展开更多
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi...Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.展开更多
基金the National Basic Research Program (Grant No. 2004CB520804)the National High Technology Research and Development Program (Grant No. 2006AA02Z308)+1 种基金the National Natural Science Foundation of China (Grant Nos. 30270657, 30230150, and 3037030)Beijing Natural Science Foundation (Grant No. 5072037)
文摘HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mam- malian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial ho- meostasis. PDZ domain is one of the most important protein-protein interaction modules and is in- volved in a variety of important cellular functions, such as signal transduction, degradation of proteins, and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding proper- ties of HtrA2/Omi PDZ domain. Besides the reported Class II PDZ motif, it also binds to Class I and Class III motifs, and exhibits restricted variability at P?3, which means that the P?3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi. Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.
基金supported by the National Science Foundation under grant DMR#2320355supported by the Department of Energy,Office of Science,Basic Energy Sciences,under Award#DESC0022305(formulation engineering of energy materials via multiscale learning spirals)Computing resources were provided by the ARCH high-performance computing(HPC)facility,which is supported by National Science Foundation(NSF)grant number OAC 1920103。
文摘Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.