基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量...基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。展开更多
文摘基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。
文摘以整块鸡胸肉为研究对象,利用在线近红外光谱系统采集其900~1650 nm波长范围内的光谱信息,探究光谱信息与细菌菌落总数(Total Viable Count,TVC)之间的定量关系。对采集的原始光谱信息进行高斯滤波平滑(Gaussian Filter Smoothing,GFS)等五种预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型。采用回归系数法(Regression Coefficient,RC)和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长,构建优化的PLS模型和多元线性回归(Multiple Linear Regression,MLR)模型。结果表明,基于全波段GFS光谱构建的GFS-PLS模型预测鸡胸肉TVC效果最佳(rP=0.964,RMSEP=0.806 lg CFU/g)。基于SPA法从GFS光谱中筛选出的25个最优波长(907.0、913.7、923.8、927.2、937.2、947.3、974.0、987.3、997.3、1007.3、1040.4、1080.1、1099.9、1132.9、1155.9、1185.5、1215.0、1241.2、1270.6、1358.2、1380.8、1403.3、1419.3、1578.9和1615.2 nm),建立的SPA-GFS-MLR模型预测性能(rP=0.944,RMSEP=1.022 lg CFU/g)最接近GFS-PLS模型。基于在线近红外光谱系统可实现对大批量整块鸡胸肉细菌总数含量的快速无接触检测。