The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The c...The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.展开更多
To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-p...To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple.展开更多
The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient sh...The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient should be investigated through experiments or theoretical equations to assess the durability of an RC structure.This study aims to predict the chloride ion diffusion coefficient of concrete,a heterogeneous material.A convolutional neural network(CNN)-based regression model that learns the condition of the concrete surface through deep learning,is developed to efficiently obtain the chloride ion diffusion coefficient.For the model implementation to determine the chloride ion diffusion coefficient,concrete mixes with w/c ratios of 0.33,0.40,0.46,0.50,0.62,and 0.68,are cured for 28 days;subsequently,the surface image data of the specimens are collected.Finally,the proposed model predicts the chloride ion diffusion coefficient using the concrete surface image data and exhibits an error of approximately 1.5E−12 m^(2)/s.The results suggest the applicability of proposed model to the field of facility maintenance for estimating the chloride ion diffusion coefficient of concrete using images.展开更多
This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic speci...This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic species,solution concentration and ambient temperature is proposed in the saturated concrete.Secondly,as an example,the effects of sodium chloride solution concentration,which are associated with influencing factors such as the ionic cloud radius,electrophoresis and relaxation,on the chloride diffusion coefficient are analyzed.It is found that the diffusion coefficient decreases with the increase in solution concentration,and the electrophoresis and ionic cloud radius are two important factors influencing the ionic diffusivity.Finally,the experiments,in which the chloride diffusion coefficients in specimens under different water-cement ratios are measured by the rapid chloride migration(RCM)method,are carried out to validate the effectiveness of the proposed model,and the results indicate that there is a generally reasonable agreement between the experimental and the proposed model results.展开更多
It is necessary to pay more attention to the durability of concrete undergoing freeze-thaw cycles and seawater attack simultaneously.Investigated are the effects of water-binder ratio,fly ash(FA)contents and air-ent...It is necessary to pay more attention to the durability of concrete undergoing freeze-thaw cycles and seawater attack simultaneously.Investigated are the effects of water-binder ratio,fly ash(FA)contents and air-entraining agent on resistance to frost and chloride diffusion of marine concrete blended with FA in natural seawater.The results show that fly ash does not improve the frost resistance of concrete but can improve its resistance to chloride diffusion by addition of less than 30%.The resistance to frost and chloride diffusion of FA concrete can be improved with the decrease of water-binder ratio,and FA may improve both of them simultaneously only being mixed with air-entraining agent.A ratio(named as R)of the frost-resisting durability factor to chloride diffusion coefficient can be used to evaluate the durability of marine concrete.Scanning electron microscope(SEM)analyses are consistent with the evaluations by the value of R.展开更多
Diffusion coefficients of chloride ions in four soils of different texture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm3 under three different temperatures were determined by t...Diffusion coefficients of chloride ions in four soils of different texture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm3 under three different temperatures were determined by the diffusion-cell method using 36Cl-labelled CaCl2 solution. The results showed that activation energy decreased with water content, which indicated that the threshold for diffusion was lower at a higher soil moisture rate. Therefore, the diffusion coefficient (D) of chloride ions in soil increased consistently with soil moisture. Although a near linear increase in the diffusion coefficient with increasing soil moisture or bulk density in all the soils was observed, the increase rate in different soils was not the same. The D value increased with temperature, and with temperature increased by 10℃ in the range from 5 "C to 45℃ theD valve increased by 10%~30%, averaging about 20%.展开更多
This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand con...This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.展开更多
Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport...Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport rate of chloride ions and the time for rusting of steel bars.In this paper,the artificial reef concrete member is taken as the research object,and the diffusion coefficient of seawater chloride ion in C30,C35 and steel slag composite artificial reef concrete is analyzed.The critical chloride ion concentration of steel corrosion in concrete is used as the boundary condition for life prediction.The chloride ion diffusion model predicts the corrosion life of C30,C35 and steel slag composite artificial reefs in seawater.The results show that the diffusion law of chloride ions in concrete artificial reefs basically meets Fick's second law.The corrosion life of C30,C35 and steel slag composite concrete reefs was calculated by the model to be 51.6,54.8 and 56.8 years,respectively.展开更多
基金supported by the Fundamental Research Funds for the Central UniversitiesFoundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20150105)the National Natural Science Foundation of China (No. 51279074)
文摘The effect of curing age on chloride diffusion coefficient of recycled aggregate concrete subjected to different compressive stresses was investigated.A compression loading setup was both designed and fabricated.The chloride diffusion coefficients of recycled aggregate concrete under compressive stresses were measured by the rapid chloride ion migration(RCM)method.The experimental results show that the chloride diffusion coefficients of recycled aggregate concrete(RAC)under different compressive stress ratios generally decrease with the increase of curing age.For RAC subjected to the same compressive stress ratios,the chloride diffusion coefficients approximately have power functions with curing ages and the relationship models are proposed.Moreover,the influence of curing age on chloride diffusion coefficient firstly decreases and then increases as the compressive stress ratio increases.
基金Funded by the National Natural Science Foundations of China(Nos.51778378,51478278)。
文摘To investigate the transport characteristics of chloride ions in cement-based materials, the Mori-Tanaka (M-T) prediction scheme of the effective diffusion coefficient in composites containing single-phase and multi-phase inclusions is systematically deduced based on the theory of composite mechanics and porous medium. The volume fraction, morphology and distribution of aggregates, as well as the interfacial transition zone (ITZ) are fully taken into consideration in this proposed model. The results show that the algorithm of M-T prediction scheme with high accuracy is relatively simple.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2007904).
文摘The durability performance of reinforced concrete(RC)building structures is significantly affected by the corrosion of the steel reinforcement due to chloride penetration,thus,the chloride ion diffusion coefficient should be investigated through experiments or theoretical equations to assess the durability of an RC structure.This study aims to predict the chloride ion diffusion coefficient of concrete,a heterogeneous material.A convolutional neural network(CNN)-based regression model that learns the condition of the concrete surface through deep learning,is developed to efficiently obtain the chloride ion diffusion coefficient.For the model implementation to determine the chloride ion diffusion coefficient,concrete mixes with w/c ratios of 0.33,0.40,0.46,0.50,0.62,and 0.68,are cured for 28 days;subsequently,the surface image data of the specimens are collected.Finally,the proposed model predicts the chloride ion diffusion coefficient using the concrete surface image data and exhibits an error of approximately 1.5E−12 m^(2)/s.The results suggest the applicability of proposed model to the field of facility maintenance for estimating the chloride ion diffusion coefficient of concrete using images.
基金The National Basic Research Program of China(973Program)(No.2009CB623203)the National Natural Science Foundation of China(No.51078186)+2 种基金Program for Special Talents in Six Fields of Jiangsu Province(No.2008169)the Natural Science Foundation of Jiangsu Province(No.BK2010071)China Postdoctoral Science Foundation(No.200902500)
文摘This paper applies the Debye-Hückel-Onsager electrolyte solution theory to investigate the diffusivity of ions in concrete pore solutions.First,a model of the diffusion coefficient associated with the ionic species,solution concentration and ambient temperature is proposed in the saturated concrete.Secondly,as an example,the effects of sodium chloride solution concentration,which are associated with influencing factors such as the ionic cloud radius,electrophoresis and relaxation,on the chloride diffusion coefficient are analyzed.It is found that the diffusion coefficient decreases with the increase in solution concentration,and the electrophoresis and ionic cloud radius are two important factors influencing the ionic diffusivity.Finally,the experiments,in which the chloride diffusion coefficients in specimens under different water-cement ratios are measured by the rapid chloride migration(RCM)method,are carried out to validate the effectiveness of the proposed model,and the results indicate that there is a generally reasonable agreement between the experimental and the proposed model results.
基金supported by the National Natural Science Foundation of China(Grant No.50572127)
文摘It is necessary to pay more attention to the durability of concrete undergoing freeze-thaw cycles and seawater attack simultaneously.Investigated are the effects of water-binder ratio,fly ash(FA)contents and air-entraining agent on resistance to frost and chloride diffusion of marine concrete blended with FA in natural seawater.The results show that fly ash does not improve the frost resistance of concrete but can improve its resistance to chloride diffusion by addition of less than 30%.The resistance to frost and chloride diffusion of FA concrete can be improved with the decrease of water-binder ratio,and FA may improve both of them simultaneously only being mixed with air-entraining agent.A ratio(named as R)of the frost-resisting durability factor to chloride diffusion coefficient can be used to evaluate the durability of marine concrete.Scanning electron microscope(SEM)analyses are consistent with the evaluations by the value of R.
文摘Diffusion coefficients of chloride ions in four soils of different texture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm3 under three different temperatures were determined by the diffusion-cell method using 36Cl-labelled CaCl2 solution. The results showed that activation energy decreased with water content, which indicated that the threshold for diffusion was lower at a higher soil moisture rate. Therefore, the diffusion coefficient (D) of chloride ions in soil increased consistently with soil moisture. Although a near linear increase in the diffusion coefficient with increasing soil moisture or bulk density in all the soils was observed, the increase rate in different soils was not the same. The D value increased with temperature, and with temperature increased by 10℃ in the range from 5 "C to 45℃ theD valve increased by 10%~30%, averaging about 20%.
基金This project owes gratitude to the Science and Technology Project (No.2008-K4-27) of Ministry of Housing and Urban-Rural Developmentthe"Tralented Personnel Nurturing in Six Fundamental Fields"Project of Jiangsu Province and"Qing-Lan Project"+2 种基金the Science and Technology Project of Jiangsu Bureau of Construction and Supervision (No.JG2007-13)the Science and Technology Planning Project of Xuzhou City(No.XJ08077)the Scientific Research Project of Xuzhou Institute of Technology(No.XKY2008225).
文摘This paper describes an orthogonal experiment on the effect of water/cement ratio,water consumption per cubic meter,curing time,and type of sand on the response"resistance to chloride ion penetration".A sea-sand containing concrete was used for the trials.An analysis of chloride ion diffusion coefficients at different factor levels was performed.A predictive model of chloride ion diffusion in concrete is developed through regression analysis.The experimental results show that when the water/cement ratio varies from 0.45 to 0.60,and the water consumption per cubic meter varies from 185 to 215 kg,and the curing time varies from 30 to 180 d then the size of the effects fall in the order(most significant first): curing time,type of sand,water consumption per cubic meter,and water/cement ratio.Chloride ion penetration is reduced,and better durability of the concrete is observed,with longer curing times,less water consumption per cubic meter,and a smaller water/cement ratio.
文摘Corrosion of steel bars with chloride salt erosion is one of the main reasons for the deterioration of the performance of reinforced concrete structures.The key to the service life of concrete members is the transport rate of chloride ions and the time for rusting of steel bars.In this paper,the artificial reef concrete member is taken as the research object,and the diffusion coefficient of seawater chloride ion in C30,C35 and steel slag composite artificial reef concrete is analyzed.The critical chloride ion concentration of steel corrosion in concrete is used as the boundary condition for life prediction.The chloride ion diffusion model predicts the corrosion life of C30,C35 and steel slag composite artificial reefs in seawater.The results show that the diffusion law of chloride ions in concrete artificial reefs basically meets Fick's second law.The corrosion life of C30,C35 and steel slag composite concrete reefs was calculated by the model to be 51.6,54.8 and 56.8 years,respectively.