With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e...With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.展开更多
Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasing...Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.展开更多
As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground mo...As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.展开更多
Health literacy is the capacity of an individual to understand information related to a disease in order to make an informed decision. In patients with kidney diseases, studies have reported increasing impact of limit...Health literacy is the capacity of an individual to understand information related to a disease in order to make an informed decision. In patients with kidney diseases, studies have reported increasing impact of limited health literacy on health outcomes. Our paper discusses current literature on health literacy in kidney diseases.展开更多
基金support from the China Scholarship Council(Grant No.202108890044).
文摘With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.
文摘Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.
基金National Key Technology R&D Program Granted (No. 2009BAK55B01)
文摘As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.
文摘Health literacy is the capacity of an individual to understand information related to a disease in order to make an informed decision. In patients with kidney diseases, studies have reported increasing impact of limited health literacy on health outcomes. Our paper discusses current literature on health literacy in kidney diseases.