A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit ...A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit workers to complete manual operations. Artificial intelligence and robotics, which are rapidly evolving, offer potential solutions to this problem. In this paper, a navigation method dedicated to solving the issues of the inability to pass smoothly at corners in practice and local obstacle avoidance is presented. In the system, a Gaussian fitting smoothing rapid exploration random tree star-smart(GFS RRT^(*)-Smart) algorithm is proposed for global path planning and enhances the performance when the robot makes a sharp turn around corners. In local obstacle avoidance, a deep reinforcement learning determiner mixed actor critic(MAC) algorithm is used for obstacle avoidance decisions. The navigation system is implemented in a scaled-down simulation factory.展开更多
针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束...针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束随机采样点在目标点附近采样,引导随机树朝着目标点生长,提高算法的规划速度,并结合去除冗余节点策略和Minimum Snap航迹平滑方法,在复杂三维环境中可快速生成一条安全、平滑且满足无人机动力学约束的航迹。仿真结果表明,该算法有效提高航迹规划速度并缩短航迹长度。展开更多
针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对...针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对传统的RRT算法进行改进,同时考虑到实际情况中无人驾驶车辆的动力学约束,该算法加入车辆碰撞约束和路径转角约束,并针对转角约束会导致迭代次数激增的问题提出了一种限制区域内随机转向的策略,最终得到一条安全性较高的路径.采用计算机仿真对所提算法和现有算法的性能进行对比验证.所提算法在狭长空间相较于传统人工势场引导下的RRT算法迭代次数降低了33.09%,规划时间减少了6.44%,路径长度减少了0.06%,并且在简单环境和复杂障碍物环境下规划能力均有提升.所提算法规划效率更高、迭代次数更少.展开更多
利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环...利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环境的随机概率采样并结合人工势场的目标偏向扩展策略,以提高算法收敛速度,增强算法搜索能力。其次,为解决规划路径曲折且冗余点多的问题,提出改进蚁群寻优路径,并结合跳点筛选策略及三次B样条以消除冗余点平滑最终路径。最后,改进后的算法与A*算法、目标偏向RRT算法进行了对比分析。仿真结果表明:改进后的算法节点耗费量降低了54.8%,时间平均缩短了75.88%,从而验证了算法的有效性。展开更多
针对多机时间协同航路规划问题提出一种基于层次分解的在线三维规划方法。首先,将高维强耦合协同规划问题按3层分解为低维的简单优化问题。其次,提出基于反双曲正切函数的协同指标参数的优化方法,以解决各无人机时间间隔过大导致绕飞消...针对多机时间协同航路规划问题提出一种基于层次分解的在线三维规划方法。首先,将高维强耦合协同规划问题按3层分解为低维的简单优化问题。其次,提出基于反双曲正切函数的协同指标参数的优化方法,以解决各无人机时间间隔过大导致绕飞消耗的问题。然后,提出基于滚动时域的三维快速搜索随机树^(*)(three dimensional rapidly-exploring random tree^(*)based on receding horizon,TRH-RRT^(*))在线航路规划算法,用有偏随机样本增加采样点利用率,用人工势场法引导RRT^(*)节点生长并基于滚动时域的节点去除法减少非必要的扫描过程。最后,针对多机会聚攻击任务进行了仿真验证,结果表明所提方法在航路规划时间及规划结果方面具备一定优越性。展开更多
文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面...文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面,利用RRT算法进行粗粒度的路径分支决策,并将已选分支的边缘信号反馈给局部路径的计算.通过RRT^(*)的重剪枝功能,能够在局部进行路径优化,而避免将其用于整体路径优化时可能带来的“选择震荡”风险.仿真实验与真实环境结果表明:将RRT*与RRT在局部和全局两种尺度上的区分使用,相较只使用RRT算法路径长度减少了16.4%.展开更多
Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path pl...Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.展开更多
基金National Natural Science Foundation of China (No.61903078)。
文摘A large number of logistics operations are needed to transport fabric rolls and dye barrels to different positions in printing and dyeing plants, and increasing labor cost is making it difficult for plants to recruit workers to complete manual operations. Artificial intelligence and robotics, which are rapidly evolving, offer potential solutions to this problem. In this paper, a navigation method dedicated to solving the issues of the inability to pass smoothly at corners in practice and local obstacle avoidance is presented. In the system, a Gaussian fitting smoothing rapid exploration random tree star-smart(GFS RRT^(*)-Smart) algorithm is proposed for global path planning and enhances the performance when the robot makes a sharp turn around corners. In local obstacle avoidance, a deep reinforcement learning determiner mixed actor critic(MAC) algorithm is used for obstacle avoidance decisions. The navigation system is implemented in a scaled-down simulation factory.
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。
文摘针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束随机采样点在目标点附近采样,引导随机树朝着目标点生长,提高算法的规划速度,并结合去除冗余节点策略和Minimum Snap航迹平滑方法,在复杂三维环境中可快速生成一条安全、平滑且满足无人机动力学约束的航迹。仿真结果表明,该算法有效提高航迹规划速度并缩短航迹长度。
文摘针对狭长空间无人车辆路径规划系统,提出一种基于改进的快速搜索随机树(rapidly-exploring random trees,RRT)路径规划算法,以解决传统RRT算法随机性较大、路径缺乏安全性的问题.该算法通过加入自适应目标概率采样策略、动态步长策略对传统的RRT算法进行改进,同时考虑到实际情况中无人驾驶车辆的动力学约束,该算法加入车辆碰撞约束和路径转角约束,并针对转角约束会导致迭代次数激增的问题提出了一种限制区域内随机转向的策略,最终得到一条安全性较高的路径.采用计算机仿真对所提算法和现有算法的性能进行对比验证.所提算法在狭长空间相较于传统人工势场引导下的RRT算法迭代次数降低了33.09%,规划时间减少了6.44%,路径长度减少了0.06%,并且在简单环境和复杂障碍物环境下规划能力均有提升.所提算法规划效率更高、迭代次数更少.
基金Natural Science Foundation of Shaanxi Province(No.2019JM-286)。
文摘利用快速扩展随机树算法(Rapidly-exploring random tree,RRT)进行路径规划时,在狭窄复杂区域与空旷障碍区域融合环境下,存在随机性大、搜索时间长、路径曲折等问题。为此,提出了一种基于蚁群的环境分区目标偏置RRT算法。首先,采用分环境的随机概率采样并结合人工势场的目标偏向扩展策略,以提高算法收敛速度,增强算法搜索能力。其次,为解决规划路径曲折且冗余点多的问题,提出改进蚁群寻优路径,并结合跳点筛选策略及三次B样条以消除冗余点平滑最终路径。最后,改进后的算法与A*算法、目标偏向RRT算法进行了对比分析。仿真结果表明:改进后的算法节点耗费量降低了54.8%,时间平均缩短了75.88%,从而验证了算法的有效性。
文摘针对多机时间协同航路规划问题提出一种基于层次分解的在线三维规划方法。首先,将高维强耦合协同规划问题按3层分解为低维的简单优化问题。其次,提出基于反双曲正切函数的协同指标参数的优化方法,以解决各无人机时间间隔过大导致绕飞消耗的问题。然后,提出基于滚动时域的三维快速搜索随机树^(*)(three dimensional rapidly-exploring random tree^(*)based on receding horizon,TRH-RRT^(*))在线航路规划算法,用有偏随机样本增加采样点利用率,用人工势场法引导RRT^(*)节点生长并基于滚动时域的节点去除法减少非必要的扫描过程。最后,针对多机会聚攻击任务进行了仿真验证,结果表明所提方法在航路规划时间及规划结果方面具备一定优越性。
文摘文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面,利用RRT算法进行粗粒度的路径分支决策,并将已选分支的边缘信号反馈给局部路径的计算.通过RRT^(*)的重剪枝功能,能够在局部进行路径优化,而避免将其用于整体路径优化时可能带来的“选择震荡”风险.仿真实验与真实环境结果表明:将RRT*与RRT在局部和全局两种尺度上的区分使用,相较只使用RRT算法路径长度减少了16.4%.
基金funded by International University,VNU-HCM under Grant Number T2021-02-IEM.
文摘Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles.In this paper,we propose a novel path planning algorithm-Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer,Particle swarm optimization(PSO),for fine-tuning and enhancement.In Phase 1,the start and goal trees are initialized at the starting and goal positions,respectively,and the intermediary tree is initialized at a random unexplored region of the search space.The trees were grown until one met the other and then merged and re-initialized in other unexplored regions.If the start and goal trees merge,the first solution is found and passed through a minimization process to reduce unnecessary nodes.Phase 2 begins by feeding the minimized solution from Phase 1 as the global best particle of PSO to optimize the path.After simulating two special benchmark configurations and six practice configurations with special cases,the results of the study concluded that the proposed method is capable of handling small to large,simple to complex continuous environments,whereas it was very tedious for the previous method to achieve.