This study facilitates the scalability of as-built data from an earlier street level to underground transportation sites from the life-cycle perspective of urban information maintenance. As-built 3D scans of a 6 km st...This study facilitates the scalability of as-built data from an earlier street level to underground transportation sites from the life-cycle perspective of urban information maintenance. As-built 3D scans of a 6 km street were made at different time periods, and of 3 underground Mass Rapid Transit (MRT) stations under construction in Taipei. A scanned point cloud was used to create a Building Information Modeling (BIM) Level of Development (LOD) 500 as-built point cloud model, with which topographic utility data were integrated and the model quality was investigated. The complex underground models of the transportation stations are proofed to be in correct relative locations to the street entrances on ground level. In the future the 3D relationship around the station will facilitate new designs or excavations in the neighborhood urban environment.展开更多
煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对...煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。展开更多
SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精...SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精准的定位导航。同时,激光雷达等三维扫描设备获得的三维点云数据存在着大量的冗余三维数据点,过多的冗余数据不仅浪费大量的存储空间,同时也影响了各种点云处理算法的实时性。针对以上问题,本文提出一种SLAM运动畸变去除方法和一种基于曲率的点云数据分类简化框架。它通过激光插值法优化SLAM运动畸变,将优化后的点云数据分类简化。它能在提高SLAM建图精度,同时也很好的消除三维点云数据中特征不明显区域的冗余数据点,大大提高计算机运行效率。展开更多
文摘This study facilitates the scalability of as-built data from an earlier street level to underground transportation sites from the life-cycle perspective of urban information maintenance. As-built 3D scans of a 6 km street were made at different time periods, and of 3 underground Mass Rapid Transit (MRT) stations under construction in Taipei. A scanned point cloud was used to create a Building Information Modeling (BIM) Level of Development (LOD) 500 as-built point cloud model, with which topographic utility data were integrated and the model quality was investigated. The complex underground models of the transportation stations are proofed to be in correct relative locations to the street entrances on ground level. In the future the 3D relationship around the station will facilitate new designs or excavations in the neighborhood urban environment.
文摘煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。
文摘SLAM(Simultaneously Localization And Mapping)同步定位与地图构建作为移动机器人智能感知的关键技术。但是,大多已有的SLAM方法是在静止环境下实现的,当环境中存在移动频繁的障碍物时,SLAM建图会产生运动畸变,导致机器人无法进行精准的定位导航。同时,激光雷达等三维扫描设备获得的三维点云数据存在着大量的冗余三维数据点,过多的冗余数据不仅浪费大量的存储空间,同时也影响了各种点云处理算法的实时性。针对以上问题,本文提出一种SLAM运动畸变去除方法和一种基于曲率的点云数据分类简化框架。它通过激光插值法优化SLAM运动畸变,将优化后的点云数据分类简化。它能在提高SLAM建图精度,同时也很好的消除三维点云数据中特征不明显区域的冗余数据点,大大提高计算机运行效率。