期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and Mechanical Property of 2024 Aluminium Alloy Prepared by Rapid Solidification and Mechanical Milling 被引量:2
1
作者 Guoxian LIANG Erde WANG Zhimin LI and Zhichao LI (School of Materials Science and Engineering, Harbin Institute of Technology Harbin, 150001, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期398-402,共5页
Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characteri... Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characterized by X-ray diffraction analyses and transmission electron microscopy observations. The results showed that mechanical milling reduced the grain size to nanometer, dissolved the Al2Cu intermetallic compound into the aluminium matrix and produced an aluminium supersaturated solid solution. During consolidation process. the grain size increased to submicrometer, and the Al2Cu and Al2(Cu, Mg, Si, Fe, Mn) compounds precipitated owing to heating. Increasing consolidation temperature and time results in obvious grain growth and coarsening of second phase particles. The tensile yield strength of the consolidated alloy with submicrometer size grains increases with decreasing grain size, and it follows the famous HallPetch relation 展开更多
关键词 FIGURE Microstructure and Mechanical Property of 2024 Aluminium Alloy Prepared by rapid Solidification and Mechanical Milling MPR SI
下载PDF
Applying dynamic light scattering to investigate the self-assembly process of DNA nanostructures
2
作者 Wei Yuan Gui-Zhi Dong +7 位作者 Hui Ning Xiang-Xiang Guan Jia-Feng Cheng Zi-Wei Shi Xiu-Ji Du Si-Wen Meng Dong-Sheng Liu Yuan-Chen Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期316-320,共5页
Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)s... Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)strategy has been applied to study the global assembly process of DNA origami and DNA bricks.Through the temperature dependent size and intensity profiles,the self-assembly process of various DNA nanostructures with different morphologies have been well-studied and the temperature transition ranges could be observed.Taking advantage of the DLS information,rapid preparation of the DNA origami and the brick assembly has been realized through a constant temperature annealing.Our results demonstrate that the DLS-based strategy provides a convenient and robust tool to study the dynamic process of forming hieratical DNA structures,which will benefit understanding the mechanism of self-assembly of DNA nanostructures. 展开更多
关键词 Dynamic light scattering Self-assembly process DNA nanostructures Temperature transition ranges rapid preparation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部