Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized ...Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized with rapid prototypes of 3D CAD of products. Rapid prototyping has been an effective tool of R&D of new products. A novel rapid prototyping and manufacturing (RP&M) technique is brought forward. The principle of the process is to form layered sections and to make the prototype or part layer by layer by deflection projection of electric charged powder granules passing through electric or magnetic field and by controllable line and field scan of the powder granule beam. The feasibility issue of the process is theoretically and experimentally investigated.It shows that deflection projection of electric charged powder granules beam passing through electric field can be significant and feasible to the rapid prototyping technique.展开更多
The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and...The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and quickly cast complex castings.The combination of additive manufacturing and traditional casting technology can break the constraint of traditional casting technology,improve casting flexibility,and ameliorate the working environment.Besides,additive manufacturing promotes the realization of"free casting",greatly simplifying the processing procedures and shortening the manufacturing cycle.This paper summarizes the basic principle of additive manufacturing technology and its development situation domestically and overseas,mainly focusing on the development status of several main additive manufacturing technologies applicable to the foundry field,including three-dimensional printing,selective laser sintering,stereolithography,layered extrusion forming,etc.Finally,the future development trend of additive manufacturing technology in the foundry field is prospected.展开更多
Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in...Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in- novative processes and frontier application research are all being conducted here to catch up with the new develop- ment of this technology. In the paper, newly developed processes, such as ultraviolet-light emitting diode (UV- LED) stereolithography, ceramic stereolithography, and direct metal forming, were described. Some results of the frontier application researches, such as indirect fabrication of ceramic casting mould, wind-tunnel-testing models, photonic crystals and metamatcrials, were also briefly reviewed.展开更多
At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS...At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.展开更多
The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results sho...The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.展开更多
The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can ...The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.展开更多
Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are f...Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are firstly described according to the used material types. Many application examples of metal additive manufacturing are then listed based on application value. The summary is finally given to point development direction of metal additive manufacturing in the future. Additive manufacturing, which is an effective supplement to traditional methods, will play an important role in intelligent and digital manufacturing.展开更多
文摘Rapid prototype manufacturing(RPM) is a new advanced manufacturing technology, which is based on the philosophy of materials increasing of lay by lay forming. Zero adventure rapid design/manufacturing can be realized with rapid prototypes of 3D CAD of products. Rapid prototyping has been an effective tool of R&D of new products. A novel rapid prototyping and manufacturing (RP&M) technique is brought forward. The principle of the process is to form layered sections and to make the prototype or part layer by layer by deflection projection of electric charged powder granules passing through electric or magnetic field and by controllable line and field scan of the powder granule beam. The feasibility issue of the process is theoretically and experimentally investigated.It shows that deflection projection of electric charged powder granules beam passing through electric field can be significant and feasible to the rapid prototyping technique.
基金the National Natural Science Foundation of China(Grant Nos.59635040,51775204,51375190)the National Key R&D Program of China(Grant Nos.2020YFB2008300,2020YFB2008304)。
文摘The application of additive manufacturing technology is one of the main approaches to achieving the rapid casting.Additive manufacturing technology can directly prepare casting molds(cores)with no need of patterns,and quickly cast complex castings.The combination of additive manufacturing and traditional casting technology can break the constraint of traditional casting technology,improve casting flexibility,and ameliorate the working environment.Besides,additive manufacturing promotes the realization of"free casting",greatly simplifying the processing procedures and shortening the manufacturing cycle.This paper summarizes the basic principle of additive manufacturing technology and its development situation domestically and overseas,mainly focusing on the development status of several main additive manufacturing technologies applicable to the foundry field,including three-dimensional printing,selective laser sintering,stereolithography,layered extrusion forming,etc.Finally,the future development trend of additive manufacturing technology in the foundry field is prospected.
文摘Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years. Up to now~ it is still attracting the attentions of the researchers or manufacturers all over the world. Some in- novative processes and frontier application research are all being conducted here to catch up with the new develop- ment of this technology. In the paper, newly developed processes, such as ultraviolet-light emitting diode (UV- LED) stereolithography, ceramic stereolithography, and direct metal forming, were described. Some results of the frontier application researches, such as indirect fabrication of ceramic casting mould, wind-tunnel-testing models, photonic crystals and metamatcrials, were also briefly reviewed.
文摘At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.
文摘The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.
基金supported by the National Natural Science Foundation of China under Grant U19A20103the Fund for Jilin Province Scientific and Technological Development Program under No.Z20190101005JH。
文摘The fabrication of pure copper microstructures with submicron resolution has found a host of applications,such as 5G communications and highly sensitive detection.The tiny and complex features of these structures can enhance device performance during high-frequency operation.However,manufacturing pure copper microstructures remain challenging.In this paper,we present localized electrochemical deposition micro additive manufacturing(LECD-μAM).This method combines localized electrochemical deposition(LECD)and closed-loop control of atomic force servo technology,which can effectively print helical springs and hollow tubes.We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo.The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever.The results showed that it took 361 s to print a helical spring with a wire length of 320.11μm at a deposition rate of 0.887μm s^(-1),which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage.Moreover,the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring.The shear modulus of the helical spring material was about 60.8 GPa,much higher than that of bulk copper(~44.2 GPa).Additionally,the microscopic morphology and chemical composition of the spring were characterized.These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.
文摘Metal additive manufacturing is an important branch of AM, which provides an effective method for the innovative manufacturing of metal parts. Here, flow chart and main techniques of metal additive manufacturing are firstly described according to the used material types. Many application examples of metal additive manufacturing are then listed based on application value. The summary is finally given to point development direction of metal additive manufacturing in the future. Additive manufacturing, which is an effective supplement to traditional methods, will play an important role in intelligent and digital manufacturing.