Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by d...In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.展开更多
In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algor...In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algorithm was trained with 863 records of historical earthquakes, where the input regression parameters were an exponential function of the waveform envelope estimated by least squares and the maximum value of the observed waveform for each component in a single station. Ten-fold cross validation was applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents and complexity parameters. The local magnitude(MI) could be estimated with 0.19 units of mean absolute error. The proposed algorithm is easy to implement in hardware and may be used directly after the field seismological sensor to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction.展开更多
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
文摘In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.
文摘In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algorithm was trained with 863 records of historical earthquakes, where the input regression parameters were an exponential function of the waveform envelope estimated by least squares and the maximum value of the observed waveform for each component in a single station. Ten-fold cross validation was applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents and complexity parameters. The local magnitude(MI) could be estimated with 0.19 units of mean absolute error. The proposed algorithm is easy to implement in hardware and may be used directly after the field seismological sensor to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction.