With the rapid development of rare earth industry in China,high NH3-N and high salts wastewater generated in rare earth manufacture process had caused serious environment pollution especially for surrounding water bod...With the rapid development of rare earth industry in China,high NH3-N and high salts wastewater generated in rare earth manufacture process had caused serious environment pollution especially for surrounding water body.Traditional treatment processes were either incapable of reducing pollutants concentration to the levels regulated by law or prohibitively expensive and difficult to operate.In this paper,a hybrid process which integrated air stripping pretreatment and low pressure reverse osmosis(LPRO) was proposed to treat this wastewater containing high ammonia and salt.Mechanism of treatment and remediation of ammonia and salt polluted water body was investigated.Influences of temperature,pH,and air stripping time on removal ratio of ammonia efficiencies were also discussed.Relationship among trans-membrane pressure drop(ΔP),additions ratio,stability of membrane and the possibility of water reuse were studied.The results showed that removal ratio of ammonia after LPRO desalination process could reach up to 98%,fluoride amounted to more than 99% and desalt efficiencies reached up to 95%,and stripped gas ammonia could be effectively recovered.Water quality had been improved significantly to meet reuse or discharge standards.展开更多
Ammonia-nitrogen wastewater is produced during the dressing and smelting process of rare-earth ores.Such wastewater includes a very high concentration of NH4+, as well as other ions(e.g., NH4+, RE3+, Al3+, Fe3+,...Ammonia-nitrogen wastewater is produced during the dressing and smelting process of rare-earth ores.Such wastewater includes a very high concentration of NH4+, as well as other ions(e.g., NH4+, RE3+, Al3+, Fe3+, Ca2+, Cl–, and Si O32–) with a p H of 5.4–5.6.Its direct discharge will pollute, yet it can be recycled and used as a leaching reagent for ionic rare-earth ores.In this study, leaching kinetics studies of both rare earth ions and impurity ion Al3+ were conducted in the ammonia-nitrogen wastewater system with the aid of impurity inhibitors.Results showed that the leaching process of rare-earth followed the internal diffusion kinetic model.When the temperature was 298 K and the concentration of NH4+ was 0.3 mol/L, the leaching reaction rate constant of ionic rare-earth was 1.72 and the apparent activation energy was 9.619 k J/mol.The leaching rate was higher than that of conventional leaching system with ammonium sulfate, which indicated that ammonia-nitrogen wastewater system and the addition of impurity inhibitors could promote ionic rare-earth leaching.The leaching kinetic process of impurity Al3+ did not follow either internal diffusion kinetic model or chemical reaction control, but the hybrid control model which was affected by a number of process factors.Thus, during the industrial production the leaching of impurity ions could be reduced by increasing the concentration of impurity inhibitors, reducing the leaching temperature to a proper range, accelerating the seepage velocity of leaching solution, or increasing the leaching rate of rare earths.展开更多
Complete ammonia oxidizing bacteria,or comammox bacteria(CAOB),can oxidize ammonium to nitrate on its own.Its discovery revolutionized our understanding of biological nitrification,and its distribution in both natural...Complete ammonia oxidizing bacteria,or comammox bacteria(CAOB),can oxidize ammonium to nitrate on its own.Its discovery revolutionized our understanding of biological nitrification,and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle.Its wide distribution,adaptation to oligotrophic medium,and diverse metabolic pathways,means extensive research on CAOB and its application in water treatment can be promoted.Furthermore,the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment.This paper provides an overview of the discovery and environmental distribution of CAOB,as well as the physiological characteristics of the microorganisms,such as nutrient medium,environmental factors,enzymes,and metabolism,focusing on future research and the application of CAOB in wastewater treatment.Further research should be carried out on the physiological characteristics of CAOB,to analyze its ecological niche and impact factors,and explore its application potential in wastewater treatment nitrogen cycle improvement.展开更多
为解决城市污水处理过程出水氨氮浓度难以实时精准测量的问题,构建了一种融合卷积层和注意力机制的长短期记忆网络(convolutional layer and squeeze-and-excitation attention mechanism based long short-term memory network,CSA-LS...为解决城市污水处理过程出水氨氮浓度难以实时精准测量的问题,构建了一种融合卷积层和注意力机制的长短期记忆网络(convolutional layer and squeeze-and-excitation attention mechanism based long short-term memory network,CSA-LSTM)模型。首先,通过引入卷积层(convolutional layer,CL)深度提取数据中的非线性特征,并通过注意力机制(squeeze-and-excitation attention mechanism,SEAM)自适应分配特征通道的权重,实现特征解耦;其次,长短期记忆网络(long short-term memory network,LSTM)提取时间序列数据长期依赖关系,实现出水氨氮浓度的实时预测;然后,提出一种具有自适应采集函数的贝叶斯优化算法,实现模型参数优化,进一步提高模型精度;最后,基于基准实验和实际污水处理厂数据测试CSA-LSTM的有效性。结果表明,模型具有较高的出水氨氮浓度预测精度,能够有效应对城市污水处理中数据的强非线性、耦合性以及时间依赖性问题,具有良好的泛化能力。展开更多
基金Project supported by the National Special Program on Water (2009ZX07212-01)National Natural Science Foundation of China (20877001)+1 种基金China Postdoctoral Foundation (20070420255)Key Teaching Foundation of Shenyang University of Tchnology (11394)
文摘With the rapid development of rare earth industry in China,high NH3-N and high salts wastewater generated in rare earth manufacture process had caused serious environment pollution especially for surrounding water body.Traditional treatment processes were either incapable of reducing pollutants concentration to the levels regulated by law or prohibitively expensive and difficult to operate.In this paper,a hybrid process which integrated air stripping pretreatment and low pressure reverse osmosis(LPRO) was proposed to treat this wastewater containing high ammonia and salt.Mechanism of treatment and remediation of ammonia and salt polluted water body was investigated.Influences of temperature,pH,and air stripping time on removal ratio of ammonia efficiencies were also discussed.Relationship among trans-membrane pressure drop(ΔP),additions ratio,stability of membrane and the possibility of water reuse were studied.The results showed that removal ratio of ammonia after LPRO desalination process could reach up to 98%,fluoride amounted to more than 99% and desalt efficiencies reached up to 95%,and stripped gas ammonia could be effectively recovered.Water quality had been improved significantly to meet reuse or discharge standards.
基金Project supported by National Natural Science Foundation of China(51164010)the Natural Science Foundation of Jiangxi Province(2010GZC0048)
文摘Ammonia-nitrogen wastewater is produced during the dressing and smelting process of rare-earth ores.Such wastewater includes a very high concentration of NH4+, as well as other ions(e.g., NH4+, RE3+, Al3+, Fe3+, Ca2+, Cl–, and Si O32–) with a p H of 5.4–5.6.Its direct discharge will pollute, yet it can be recycled and used as a leaching reagent for ionic rare-earth ores.In this study, leaching kinetics studies of both rare earth ions and impurity ion Al3+ were conducted in the ammonia-nitrogen wastewater system with the aid of impurity inhibitors.Results showed that the leaching process of rare-earth followed the internal diffusion kinetic model.When the temperature was 298 K and the concentration of NH4+ was 0.3 mol/L, the leaching reaction rate constant of ionic rare-earth was 1.72 and the apparent activation energy was 9.619 k J/mol.The leaching rate was higher than that of conventional leaching system with ammonium sulfate, which indicated that ammonia-nitrogen wastewater system and the addition of impurity inhibitors could promote ionic rare-earth leaching.The leaching kinetic process of impurity Al3+ did not follow either internal diffusion kinetic model or chemical reaction control, but the hybrid control model which was affected by a number of process factors.Thus, during the industrial production the leaching of impurity ions could be reduced by increasing the concentration of impurity inhibitors, reducing the leaching temperature to a proper range, accelerating the seepage velocity of leaching solution, or increasing the leaching rate of rare earths.
基金supported by the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(No.62021003)Biological Wastewater Treatment and Process Control Technology,Beijing International Science and technology Cooperation Baseand the Founding projects of Beijing Municipal Commission of Education.
文摘Complete ammonia oxidizing bacteria,or comammox bacteria(CAOB),can oxidize ammonium to nitrate on its own.Its discovery revolutionized our understanding of biological nitrification,and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle.Its wide distribution,adaptation to oligotrophic medium,and diverse metabolic pathways,means extensive research on CAOB and its application in water treatment can be promoted.Furthermore,the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment.This paper provides an overview of the discovery and environmental distribution of CAOB,as well as the physiological characteristics of the microorganisms,such as nutrient medium,environmental factors,enzymes,and metabolism,focusing on future research and the application of CAOB in wastewater treatment.Further research should be carried out on the physiological characteristics of CAOB,to analyze its ecological niche and impact factors,and explore its application potential in wastewater treatment nitrogen cycle improvement.