Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. ...Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. The Nd:YAG precursor powders with loosely dispersed, slightly agglomerated and YAG cubic crystal phase were synthesized at 1100 ℃ by the co-precipitation method combined with the reverse strike,展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light tra...Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance and field emission gun-environment scanning microscope. Using statistics and stereology theory, study was carried out on the quantitative relationships between light transmittance and stereological parameters in three-dimensional Euclidean space. It is found that the transmittance of Nd:YAG with 1 mm in thickness is about 45% and 58% in visible and near-infrared wavelength, respectively. The transmittance linearly increases with increasing equivalent sphere diameter and reaches the theoretical value of single crystal when the equivalent sphere diameter is 20μm. The transmittance decreases with the increasing of mean specific area per unit volume of grain and discrete grains, and the transmittance decreases with increasing mean free distance of grains in Nd:YAG ceramics.展开更多
Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmit...Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.展开更多
文摘Transparent polycrystaUine neodymiumdoped yttrium aluminum garnet ceramics (Nd:YAG) with better chemical stability, excellent optical and high temperature mechanical property is becoming a new laser host material. The Nd:YAG precursor powders with loosely dispersed, slightly agglomerated and YAG cubic crystal phase were synthesized at 1100 ℃ by the co-precipitation method combined with the reverse strike,
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.
基金Project supported by Key Science and Technology of Chinese Ministry of Education (205037)
文摘Nd : YAG precursor powders were synthesized by homogeneous precipitation, and Nd : YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance and field emission gun-environment scanning microscope. Using statistics and stereology theory, study was carried out on the quantitative relationships between light transmittance and stereological parameters in three-dimensional Euclidean space. It is found that the transmittance of Nd:YAG with 1 mm in thickness is about 45% and 58% in visible and near-infrared wavelength, respectively. The transmittance linearly increases with increasing equivalent sphere diameter and reaches the theoretical value of single crystal when the equivalent sphere diameter is 20μm. The transmittance decreases with the increasing of mean specific area per unit volume of grain and discrete grains, and the transmittance decreases with increasing mean free distance of grains in Nd:YAG ceramics.
基金Study on Optical Properties and Structure of Transparent Ceramics,Chinese Education Ministry Excellent Teachers Project (KB200226)
文摘Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.