Two carbonatite dykes separetely located on Dulahala Mountain and within Erdaowa Group strata in Bayan Ebo mineral deposit have been studied.For Dulahala carbonatite the content of RE2O3 is 23.9 wt%,higher than that i...Two carbonatite dykes separetely located on Dulahala Mountain and within Erdaowa Group strata in Bayan Ebo mineral deposit have been studied.For Dulahala carbonatite the content of RE2O3 is 23.9 wt%,higher than that in the rare earth ores of both Main Ore-body and Eastern Ore-body,the distribution patterns of rare earth elements and rare earth mineral assemblage are consistent with those in both Ore-bodies.The evidence indicates a material source for RE in Bayan Ebo deposit.Fenite occurring at the edge of the carbonatite in Erdaowa Group yields an isochron age of 343.26±7.33 Ma by Rb-Sr method.It implies the geological time of mineralization.展开更多
The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination ...The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination products, and the kinetic character of dissolved phosphorus was studied. The results showed that the reaction rate control changed from chemical reaction control mode to mixed control mode and diffusion control mode with increasing temperature, and the activation energy were 7.36, 27.64 and 61.27 kJ·mol-1, respectively. The change of temperature, the reagent concentration and stirring speed were studied in order to increase the dissolution rate of phosphorus. Phosphorus and rare earth in the calcination products could be separated in this process applicable to the rare earth recovery in phosphorite containing the rare earth.展开更多
The microstructural characteristics of syntactic polycrystal in the calcium rare earth fluorocarbonate minerals from Southwest China have been studied by means of selected area electron diffraction and high resolutio...The microstructural characteristics of syntactic polycrystal in the calcium rare earth fluorocarbonate minerals from Southwest China have been studied by means of selected area electron diffraction and high resolution electron microscopy(HREM). The complication of the heterogeneous fabric of the minerals have been revealed by HREM. The results show that the crystal structure of the minerals was formed by a disorder stacking of the unit layers of bast naesite and synchisite in the calcium rare earth fluorocarbonate minerals along c direction. The stacking fault and other crystal defects in the syntactic polycrystal have been discussed.展开更多
This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal di...This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal diffractometer . Five kinds of coordination forms were found . All atoms in the cell , including C and F , were properly located . In the process of study in a cordylite-(Ce ), a new mineral was discovered , whose chemical formula is (Ca0.5□0.5) BaCe2 (CO3)4F . It is isostructural with baiyuneboite - (Ce ), but different in composition (Na in baiyuneboite- (Ce ) is substituted by Ca disorderly ) . On the basis of the studies a proposal to re-define cordylite-(Ce )as a mineral group name is put forth by the authors . Finally a new type of twinning of huanghoite-(Ce ) was found on the systematical absence of diffraction data by means of a single crystal diffractometer .展开更多
The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of mo...The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of monazite or bastnaesite is explored by modern measuring techniques,such as IR and ESCA,etc.展开更多
Malignant transformation of hamsterembryo cells was induced in vitro by rareearth iron mineral dusts(MP),naturalthorium(Th02) and MP plus Th02.Dusts of MP,MP plus Th02 or Th02 were added into themedium with the final ...Malignant transformation of hamsterembryo cells was induced in vitro by rareearth iron mineral dusts(MP),naturalthorium(Th02) and MP plus Th02.Dusts of MP,MP plus Th02 or Th02 were added into themedium with the final concentration of 17.0,展开更多
Common rare earth(RE) minerals, such as bastnasite and monazite, may be formed in deposits associated with carbonate gangue, such as calcite and dolomite. Sodium oleate is a widely used collector for the flotation of ...Common rare earth(RE) minerals, such as bastnasite and monazite, may be formed in deposits associated with carbonate gangue, such as calcite and dolomite. Sodium oleate is a widely used collector for the flotation of both RE and gangue minerals, which might, therefore, be an inefficient process due to the lack of selectivity of this collector. Since these minerals are also sparingly soluble in solution, they could release their constituent ions into the solution, which could affect the floatability of other minerals. In this study, the interactions of sodium oleate with bastnasite and monazite in the presence of dissolved dolomite species have been investigated. Microflotation tests were carried out to explore the effects of these dissolved species on the floatability of the RE minerals. Zeta potential measurements and XPS characterization were carried out to understand how the species affect the collector adsorption. To complement these characterizations, density functional theory(DFT) simulations were conducted to investigate the collector-mineral and collector-adsorbed species(on the mineral surface) interactions.The results show that collector-dolomite interaction energy is greater than that of collector-adsorbed species, but lower than collector-monazite interaction energy, explaining the decrease in the minerals' recovery upon exposure to the dissolved mineral species. It is also shown that oleate ions(OI^-) have the strongest interaction with the minerals compared to other oleate species such as acid soap(HOI_2^-) and oleate dimer(OI_2^(2-)). The behavior(strength and selectivity) of sodium oleate towards RE minerals and dolomite, as compared to other RE mineral collectors(such as aromatic hydroxamate), is attributed mainly to the collector's and the minerals' structure. The long hydrocarbon chain of sodium oleate which imparts hydrophobic characteristic to the minerals, makes it stronger collector than benzohydroxamate.Moreover, sodium oleate(with linear structure), unlike the aromatic hydroxamate, can approach the mineral easier due to lesser steric hindrance effect and higher reactivity of 0 involved in the interaction,making it less selective. In addition, it can interact easily with dolomite due to the presence of more exposed active sites than RE minerals.展开更多
For increasing reaction rate and reducing decomposing temperature,TG-DTA,XRD,SEM and Chemical analysis were used to study the kinetics of mixed rar e earths minerals decomposed by CaO with NaCl-CaCl2. The results show...For increasing reaction rate and reducing decomposing temperature,TG-DTA,XRD,SEM and Chemical analysis were used to study the kinetics of mixed rar e earths minerals decomposed by CaO with NaCl-CaCl2. The results showed that the reaction rate increased with increasing of NaC-CaCl2 addition,CaO addition,an d decomposition temperature. The kinetics of mixed rare earths minerals decompos ed by CaO conformed to 1-2/3X-(1-X) 2/3=kdt mode. The decomposition reaction rate was controlled by two steps,and the activation energy was decreased with addin g of NaCl-CaCl2 melting salt. The micro-pattern of products was loosening and po rous with NaCl-CaCl2 in decomposition system.展开更多
In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applie...In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applied to investigate the rare earth minerals in Bayan Obo.The occurrence state and regularity of rare earth elements were analyzed under different reduction time. The results reveal that rare earth elements in rare earth minerals exist in RE(CO3)F(bastnaesite) and REPO4(monazite). In this research, at 1,498 K with a C/O molar ratio(i.e., molar ratio of fixed carbon in the coal to reducible oxygen in the ore) of2.5, rare earth minerals primarily decompose into RE2O3at5 min. When the time is extended to 10 min, solid-phase reactions occur among RE2O3, CaO, and SiO2, and the resultant is cerium wollastonite(CaO·2RE2O3·3SiO2). At reaction time 〉20 min, rare earth elements mainly exist in cerium wollastonite(CaO·2RE2O3·3SiO2), and the grain size varies in the range of 10–30 μm. The results show that coal-based reduction is efficient to recover rare earth minerals in reduced materials.展开更多
The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed...The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed in different leaching agents as well. The results show that the zeta potential of clay minerals decreases with the hydrated ionic radius increasing. It could be seen that the zeta potential of the clay minerals in AICl3 solution is positive,whereas that in NH4C1, KCl and MgCl2 solution is negative. And the zeta potential of clay minerals increases with the cation valence increasing. Moreover, the zeta potential of clay minerals decreases with the solution pH increasing,whereas that increases with the solution concentration increasing in different ammonium solutions. In addition,the swelling of clay minerals decreases while the zeta potential of clay minerals increasing in different ammonium solutions. The ability of compound ammonium to inhibit the swelling of clay minerals is lower than that of single ammonium solution.展开更多
The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the...The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the approval of the Ministry of Land and Resources,and that the province will strongly promote the exploration and development of展开更多
As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclea...As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclear. To understand the geochemical characteristics and factors controlling REY enrichment in zeolite clay in the deep sea, we conducted mineral identification by XRD, major and trace element measurements by XRF and REY analyses by ICP-MS on a 1.4-m-long sediment core(GC02) located in the Central Indian Oceanic Basin(CIOB). The main findings include:(1) the core sediments in GC02 possess elevated REY contents and exhibited a strong negative Ce anomaly, an apparent MREE bulge and positive Y anomaly. These were comparable with typical REY-rich clays in the Pacific Ocean, indicating the similar REY enrichment mechanism and the presence of REY-rich clays in the CIOB;(2) in comparison with the dataset from the Wharton Basin and DSDP site 213, the higher content of REY and stronger PAAS(Post Archean Australian Shale) normalization patterns in the GC02 sediments were likely caused by the weaker impact of terrigenous materials of GC02. The CIOB was suggested to be a promising place hosting REY rich pelagic sediments.展开更多
文摘Two carbonatite dykes separetely located on Dulahala Mountain and within Erdaowa Group strata in Bayan Ebo mineral deposit have been studied.For Dulahala carbonatite the content of RE2O3 is 23.9 wt%,higher than that in the rare earth ores of both Main Ore-body and Eastern Ore-body,the distribution patterns of rare earth elements and rare earth mineral assemblage are consistent with those in both Ore-bodies.The evidence indicates a material source for RE in Bayan Ebo deposit.Fenite occurring at the edge of the carbonatite in Erdaowa Group yields an isochron age of 343.26±7.33 Ma by Rb-Sr method.It implies the geological time of mineralization.
基金the National Natural Science Foundation of China (50574031)
文摘The products of mixed rare earth minerals containing monazite and bastnaesite calcined by CaO-NaCl-CaCl2 contained calcium phosphate and phosphorite. In this paper, HCl-H3cit solution was used to wash the calcination products, and the kinetic character of dissolved phosphorus was studied. The results showed that the reaction rate control changed from chemical reaction control mode to mixed control mode and diffusion control mode with increasing temperature, and the activation energy were 7.36, 27.64 and 61.27 kJ·mol-1, respectively. The change of temperature, the reagent concentration and stirring speed were studied in order to increase the dissolution rate of phosphorus. Phosphorus and rare earth in the calcination products could be separated in this process applicable to the rare earth recovery in phosphorite containing the rare earth.
文摘The microstructural characteristics of syntactic polycrystal in the calcium rare earth fluorocarbonate minerals from Southwest China have been studied by means of selected area electron diffraction and high resolution electron microscopy(HREM). The complication of the heterogeneous fabric of the minerals have been revealed by HREM. The results show that the crystal structure of the minerals was formed by a disorder stacking of the unit layers of bast naesite and synchisite in the calcium rare earth fluorocarbonate minerals along c direction. The stacking fault and other crystal defects in the syntactic polycrystal have been discussed.
文摘This paper summarizes the new developments in the study of barium rare-earth fluor-carbonate mineral structures .The second order superstructure of cebaite -(Ce ) was solved by using high power X-ray single crystal diffractometer . Five kinds of coordination forms were found . All atoms in the cell , including C and F , were properly located . In the process of study in a cordylite-(Ce ), a new mineral was discovered , whose chemical formula is (Ca0.5□0.5) BaCe2 (CO3)4F . It is isostructural with baiyuneboite - (Ce ), but different in composition (Na in baiyuneboite- (Ce ) is substituted by Ca disorderly ) . On the basis of the studies a proposal to re-define cordylite-(Ce )as a mineral group name is put forth by the authors . Finally a new type of twinning of huanghoite-(Ce ) was found on the systematical absence of diffraction data by means of a single crystal diffractometer .
文摘The properties and collecting ability of a new collector,monoalkyl ester phosphoric acid(P538),for the flotation of rare earth minerals are described in the paper.The mechanism of P538 adsorption on the surfaces of monazite or bastnaesite is explored by modern measuring techniques,such as IR and ESCA,etc.
文摘Malignant transformation of hamsterembryo cells was induced in vitro by rareearth iron mineral dusts(MP),naturalthorium(Th02) and MP plus Th02.Dusts of MP,MP plus Th02 or Th02 were added into themedium with the final concentration of 17.0,
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)and Niobec,a Magris Resources Company through the Collaborative Research and Development Program(CRDPJ 453164-13)
文摘Common rare earth(RE) minerals, such as bastnasite and monazite, may be formed in deposits associated with carbonate gangue, such as calcite and dolomite. Sodium oleate is a widely used collector for the flotation of both RE and gangue minerals, which might, therefore, be an inefficient process due to the lack of selectivity of this collector. Since these minerals are also sparingly soluble in solution, they could release their constituent ions into the solution, which could affect the floatability of other minerals. In this study, the interactions of sodium oleate with bastnasite and monazite in the presence of dissolved dolomite species have been investigated. Microflotation tests were carried out to explore the effects of these dissolved species on the floatability of the RE minerals. Zeta potential measurements and XPS characterization were carried out to understand how the species affect the collector adsorption. To complement these characterizations, density functional theory(DFT) simulations were conducted to investigate the collector-mineral and collector-adsorbed species(on the mineral surface) interactions.The results show that collector-dolomite interaction energy is greater than that of collector-adsorbed species, but lower than collector-monazite interaction energy, explaining the decrease in the minerals' recovery upon exposure to the dissolved mineral species. It is also shown that oleate ions(OI^-) have the strongest interaction with the minerals compared to other oleate species such as acid soap(HOI_2^-) and oleate dimer(OI_2^(2-)). The behavior(strength and selectivity) of sodium oleate towards RE minerals and dolomite, as compared to other RE mineral collectors(such as aromatic hydroxamate), is attributed mainly to the collector's and the minerals' structure. The long hydrocarbon chain of sodium oleate which imparts hydrophobic characteristic to the minerals, makes it stronger collector than benzohydroxamate.Moreover, sodium oleate(with linear structure), unlike the aromatic hydroxamate, can approach the mineral easier due to lesser steric hindrance effect and higher reactivity of 0 involved in the interaction,making it less selective. In addition, it can interact easily with dolomite due to the presence of more exposed active sites than RE minerals.
基金Project supported by the National Natural Science Foundation of China (50974042)Scientific Research Special Foundation of Doctor Subject of Chinese Universities (20090042120015)The Fundamental Research Funds for the Central Universities (N090302007)
文摘For increasing reaction rate and reducing decomposing temperature,TG-DTA,XRD,SEM and Chemical analysis were used to study the kinetics of mixed rar e earths minerals decomposed by CaO with NaCl-CaCl2. The results showed that the reaction rate increased with increasing of NaC-CaCl2 addition,CaO addition,an d decomposition temperature. The kinetics of mixed rare earths minerals decompos ed by CaO conformed to 1-2/3X-(1-X) 2/3=kdt mode. The decomposition reaction rate was controlled by two steps,and the activation energy was decreased with addin g of NaCl-CaCl2 melting salt. The micro-pattern of products was loosening and po rous with NaCl-CaCl2 in decomposition system.
基金financially supported by the National Natural Science Foundation of China (Nos. 51204033 and 51134002)
文摘In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applied to investigate the rare earth minerals in Bayan Obo.The occurrence state and regularity of rare earth elements were analyzed under different reduction time. The results reveal that rare earth elements in rare earth minerals exist in RE(CO3)F(bastnaesite) and REPO4(monazite). In this research, at 1,498 K with a C/O molar ratio(i.e., molar ratio of fixed carbon in the coal to reducible oxygen in the ore) of2.5, rare earth minerals primarily decompose into RE2O3at5 min. When the time is extended to 10 min, solid-phase reactions occur among RE2O3, CaO, and SiO2, and the resultant is cerium wollastonite(CaO·2RE2O3·3SiO2). At reaction time 〉20 min, rare earth elements mainly exist in cerium wollastonite(CaO·2RE2O3·3SiO2), and the grain size varies in the range of 10–30 μm. The results show that coal-based reduction is efficient to recover rare earth minerals in reduced materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 41472071 and 51734001)
文摘The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed in different leaching agents as well. The results show that the zeta potential of clay minerals decreases with the hydrated ionic radius increasing. It could be seen that the zeta potential of the clay minerals in AICl3 solution is positive,whereas that in NH4C1, KCl and MgCl2 solution is negative. And the zeta potential of clay minerals increases with the cation valence increasing. Moreover, the zeta potential of clay minerals decreases with the solution pH increasing,whereas that increases with the solution concentration increasing in different ammonium solutions. In addition,the swelling of clay minerals decreases while the zeta potential of clay minerals increasing in different ammonium solutions. The ability of compound ammonium to inhibit the swelling of clay minerals is lower than that of single ammonium solution.
文摘The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the approval of the Ministry of Land and Resources,and that the province will strongly promote the exploration and development of
基金supported by the National Natural Science Foundation of China(41773005)China Ocean Mineral Resources R&D Association(COMRA)Research Program(DY125-11-R-01,DY125-22-02),the Research Center for Air Pollution and Health(RCAPH)of Zhejiang University
文摘As a potential mineral resource, the clay minerals enriched in rare earth elements including yttrium(REY) in the deep sea have been attracting great attention. However, the enrichment mechanism of REY remains unclear. To understand the geochemical characteristics and factors controlling REY enrichment in zeolite clay in the deep sea, we conducted mineral identification by XRD, major and trace element measurements by XRF and REY analyses by ICP-MS on a 1.4-m-long sediment core(GC02) located in the Central Indian Oceanic Basin(CIOB). The main findings include:(1) the core sediments in GC02 possess elevated REY contents and exhibited a strong negative Ce anomaly, an apparent MREE bulge and positive Y anomaly. These were comparable with typical REY-rich clays in the Pacific Ocean, indicating the similar REY enrichment mechanism and the presence of REY-rich clays in the CIOB;(2) in comparison with the dataset from the Wharton Basin and DSDP site 213, the higher content of REY and stronger PAAS(Post Archean Australian Shale) normalization patterns in the GC02 sediments were likely caused by the weaker impact of terrigenous materials of GC02. The CIOB was suggested to be a promising place hosting REY rich pelagic sediments.