Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observe...Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observed for the steel specimens treated with different RE treatment conditions. Furthermore, the formation and change of the nonmetallic inclusion characteristics of finished steel sheets after the RE treatment were discussed. The results have shown that in the present work,the suitable RE metal additions are 0.6 -0.9 kg/t steel. After the suitable RE treatment,the formation of AIN and MnS inclusions were restrained, and the aggregation, flotation and removal of nonmetallic inclusions were efficiently promoted and the cleanliness of liquid steel was significantly increased. Meanwhile, the total oxygen concentration reached the minimum value and thle desulfurization efficiency was optimal ,and the type of main inclusions was approximately spherical or elliptical spherical RE radicle inclusions whose size was relatively large.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
Mg-9Al-xRE magnesium alloys were studied, where, x is 0, 0.4. 0.8. 1.2 and 1.6% (in weight percent, wt%), respectively. Influence of rare earths (RE) on micro structure. and strength in both T4 (solute heat treatment)...Mg-9Al-xRE magnesium alloys were studied, where, x is 0, 0.4. 0.8. 1.2 and 1.6% (in weight percent, wt%), respectively. Influence of rare earths (RE) on micro structure. and strength in both T4 (solute heat treatment) and T6 (solute heat treatment and artificial ageing treatment) were investigated. Strength of specimen was tested at ambient temperature. The micro structure was analyzed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis. RE additions improved T4 tensile strength of the treated alloys. Small addition (0.4wt%) of RE greatly improved the strength of ageing treated (T6) Mg-9Al alloy, but further additions caused decreasing.展开更多
This paper studies a compound treatment. i. e. liquid S , N,C co-diffusing with rare earth (RE) and then oxidization , for hot-working die steels , and the effect of RE on thermal fatigue behavior of the diffused laye...This paper studies a compound treatment. i. e. liquid S , N,C co-diffusing with rare earth (RE) and then oxidization , for hot-working die steels , and the effect of RE on thermal fatigue behavior of the diffused layer. XRD and SEM energy spectrum prove that trace RE element actually penetrates into the surface layer of steels. The result shows that RE can reduce the gradient of change of hardness in diffused layer, improve the morphology and distribution of compounds , and reduce the degree of surface alligator crack for thermal fatigue. The behavior of thermal fatigue of hot-working die steels is raised by 70% or so after the application of RE. The effect of RE is analysed according to the theory.展开更多
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper...The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.展开更多
The behaviour of RE added into steel surface by laser rapid solidification processing(LRSP) and their effects on surface properties were studied. Experimental results show that RE can be added into steel surface layer...The behaviour of RE added into steel surface by laser rapid solidification processing(LRSP) and their effects on surface properties were studied. Experimental results show that RE can be added into steel surface layer by LRSP of RE containing coating. The RE in the steel surface can react with oxygen and sulphur, then be dissolved in the grains or grain boundaries, and form intermetallic compounds RE 2Fe 17 . The addition of RE by LRSP has very strong effects on the properties of steel surface.展开更多
For the purpose of decreasing the applied limitation resulting from the anisotropic mechanical property of Al-Li alloy 2195, this study employed a complex heat treatment process, involving the pre-tension, thermo-infi...For the purpose of decreasing the applied limitation resulting from the anisotropic mechanical property of Al-Li alloy 2195, this study employed a complex heat treatment process, involving the pre-tension, thermo-infiltration of the rare earth element Ce, solution treatment, and artificial aging technology. The results indicate that the infiltration of rare earth element Ce benefits the abatement of anisotropy of Al-Li alloy 2195 sheet, in contrast with that of the normal heat treatment process. The gradient of the Vickers-hardness decreases at least 50% through the thickness, and the tensile strength in the rolling direction also increases significantly. If Ce was infiltrated into the alloy under the optimum pre-deformation, the yield strength (σ0.2) increased by 30 MPa while the tensile strength (σb) enhanced by 25 MPa compared to the rare earth free samples. Meanwhile, the fractography illustrated that the fracture surface of the sample became more desirable.展开更多
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth...Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.展开更多
Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites fi...Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.展开更多
Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radi...Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.展开更多
Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance a...Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.展开更多
Effects of RE and Al on the structure, impact toughness, hardness, and wear resistance of high chromium cast iron containing wolfram were investigated. The results show that without modification the volume fraction of...Effects of RE and Al on the structure, impact toughness, hardness, and wear resistance of high chromium cast iron containing wolfram were investigated. The results show that without modification the volume fraction of austenite is high and the carbide appears to be thick lath and the grain size is relatively large; proper modification using RE combined with Al can reduce volume fraction of residual austenite in the as-cast structure obviously, refine grain size of primary austenite notably, and make the morphology of carbide changing from thick lath to thin lath, rosette, and feather-like modification can also increase hardness, wear resistance and impact toughness of cast iron.展开更多
The rare-earth hard magnets with lower temperature coefficient, including Nd_2Fe_ 14B/Fe_3B-ferrite compound bonded magnets and Sm_ 0.8RE_ 0.2 (Co_ balFe_ 0.22Cu_ 0.06Zr_ 0.03)_ 7.4(RE=Gd, Er) sintered magnets, were s...The rare-earth hard magnets with lower temperature coefficient, including Nd_2Fe_ 14B/Fe_3B-ferrite compound bonded magnets and Sm_ 0.8RE_ 0.2 (Co_ balFe_ 0.22Cu_ 0.06Zr_ 0.03)_ 7.4(RE=Gd, Er) sintered magnets, were studied. The result shows that the addition, that dope ferrite magnetic powder to double-phase nanocomposite Nd_2Fe_ 14B/Fe_3B magnetic powder, can make β_ jH_c to be obviously decreased. Similarly, the effect of homogeneous heating treatment on magnetic properties was studied. Doping heavy rare earth elements to the 2∶17-type SmCo magnet material powders shows that the sintered magnets obtained lower temperature coefficient, and enhanced magnets temperature stability.展开更多
Grain growth behavior of 5Cr21Mn9Ni4NRE steel was experimentally studied at various solid solution treatment temperatures and holding for different times. The experimental results show that the 5Cr21Mn9Ni4NRE steel ha...Grain growth behavior of 5Cr21Mn9Ni4NRE steel was experimentally studied at various solid solution treatment temperatures and holding for different times. The experimental results show that the 5Cr21Mn9Ni4NRE steel has the feature of sharp austenite grain coarsening after solid solution treatment at the temperature above 1150 ℃. RE added in the steel has the benefit to restrain grain growth and increase grain growth activation energy.展开更多
The RE-aluminized coating and pure aluminized coating on 20 carbons steel were prepared by hot dip aluminizing method at 740℃. After diffusion treatment at 850℃for 4 h, the distribution of aluminum and lanthanum ele...The RE-aluminized coating and pure aluminized coating on 20 carbons steel were prepared by hot dip aluminizing method at 740℃. After diffusion treatment at 850℃for 4 h, the distribution of aluminum and lanthanum elements in the coating was analyzed with energy disperse spectroscopy(EDS) and electron probe microanalyses(EPMA), and the lattice parameter ofα-Fe in the matrix of the coating was measured precisely by X-ray diffractometer(XRD). The results show that RE permeates into the aluminized coating, leads to lattice disturbance and increases the depth of the aluminized coating. On the basis of the results, the expression of the diffusion coefficient of Al atoms is derived from the diffusion flow, and the effect of the high vacancy concentration and high concentration gradient of vacancies on the diffusion of Al atoms was analyzed by establishing the kinetics model of the vacancy mechanism of diffusion. The results show that the high vacancy concentration and high concentration gradient of vacancies in the RE-aluminized processes are the main reason why the diffusion coefficient of Al atoms in RE-aluminizing is bigger than that in pure aluminizing.展开更多
The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic e...The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.展开更多
文摘Based on the industrial production of non-oriented silicon steel, the rare earth (RE) treatment during the Ruhrstahl Heraeus (RH) refining process was studied. The morphology and the size distribution were observed for the steel specimens treated with different RE treatment conditions. Furthermore, the formation and change of the nonmetallic inclusion characteristics of finished steel sheets after the RE treatment were discussed. The results have shown that in the present work,the suitable RE metal additions are 0.6 -0.9 kg/t steel. After the suitable RE treatment,the formation of AIN and MnS inclusions were restrained, and the aggregation, flotation and removal of nonmetallic inclusions were efficiently promoted and the cleanliness of liquid steel was significantly increased. Meanwhile, the total oxygen concentration reached the minimum value and thle desulfurization efficiency was optimal ,and the type of main inclusions was approximately spherical or elliptical spherical RE radicle inclusions whose size was relatively large.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
文摘Mg-9Al-xRE magnesium alloys were studied, where, x is 0, 0.4. 0.8. 1.2 and 1.6% (in weight percent, wt%), respectively. Influence of rare earths (RE) on micro structure. and strength in both T4 (solute heat treatment) and T6 (solute heat treatment and artificial ageing treatment) were investigated. Strength of specimen was tested at ambient temperature. The micro structure was analyzed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analysis. RE additions improved T4 tensile strength of the treated alloys. Small addition (0.4wt%) of RE greatly improved the strength of ageing treated (T6) Mg-9Al alloy, but further additions caused decreasing.
文摘This paper studies a compound treatment. i. e. liquid S , N,C co-diffusing with rare earth (RE) and then oxidization , for hot-working die steels , and the effect of RE on thermal fatigue behavior of the diffused layer. XRD and SEM energy spectrum prove that trace RE element actually penetrates into the surface layer of steels. The result shows that RE can reduce the gradient of change of hardness in diffused layer, improve the morphology and distribution of compounds , and reduce the degree of surface alligator crack for thermal fatigue. The behavior of thermal fatigue of hot-working die steels is raised by 70% or so after the application of RE. The effect of RE is analysed according to the theory.
基金the National Natural Science Foundation of China (50275093)
文摘The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.
文摘The behaviour of RE added into steel surface by laser rapid solidification processing(LRSP) and their effects on surface properties were studied. Experimental results show that RE can be added into steel surface layer by LRSP of RE containing coating. The RE in the steel surface can react with oxygen and sulphur, then be dissolved in the grains or grain boundaries, and form intermetallic compounds RE 2Fe 17 . The addition of RE by LRSP has very strong effects on the properties of steel surface.
基金Project supported by the National Key Laboratory of Precision Thermal Treatment , Harbin Institute of Technology(51471050105HK0101)
文摘For the purpose of decreasing the applied limitation resulting from the anisotropic mechanical property of Al-Li alloy 2195, this study employed a complex heat treatment process, involving the pre-tension, thermo-infiltration of the rare earth element Ce, solution treatment, and artificial aging technology. The results indicate that the infiltration of rare earth element Ce benefits the abatement of anisotropy of Al-Li alloy 2195 sheet, in contrast with that of the normal heat treatment process. The gradient of the Vickers-hardness decreases at least 50% through the thickness, and the tensile strength in the rolling direction also increases significantly. If Ce was infiltrated into the alloy under the optimum pre-deformation, the yield strength (σ0.2) increased by 30 MPa while the tensile strength (σb) enhanced by 25 MPa compared to the rare earth free samples. Meanwhile, the fractography illustrated that the fracture surface of the sample became more desirable.
基金Project supported by the National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.
基金Project supported bythe National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.
文摘Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.
文摘Effects of RE and Al on the structure, impact toughness, hardness, and wear resistance of high chromium cast iron containing wolfram were investigated. The results show that without modification the volume fraction of austenite is high and the carbide appears to be thick lath and the grain size is relatively large; proper modification using RE combined with Al can reduce volume fraction of residual austenite in the as-cast structure obviously, refine grain size of primary austenite notably, and make the morphology of carbide changing from thick lath to thin lath, rosette, and feather-like modification can also increase hardness, wear resistance and impact toughness of cast iron.
文摘The rare-earth hard magnets with lower temperature coefficient, including Nd_2Fe_ 14B/Fe_3B-ferrite compound bonded magnets and Sm_ 0.8RE_ 0.2 (Co_ balFe_ 0.22Cu_ 0.06Zr_ 0.03)_ 7.4(RE=Gd, Er) sintered magnets, were studied. The result shows that the addition, that dope ferrite magnetic powder to double-phase nanocomposite Nd_2Fe_ 14B/Fe_3B magnetic powder, can make β_ jH_c to be obviously decreased. Similarly, the effect of homogeneous heating treatment on magnetic properties was studied. Doping heavy rare earth elements to the 2∶17-type SmCo magnet material powders shows that the sintered magnets obtained lower temperature coefficient, and enhanced magnets temperature stability.
文摘Grain growth behavior of 5Cr21Mn9Ni4NRE steel was experimentally studied at various solid solution treatment temperatures and holding for different times. The experimental results show that the 5Cr21Mn9Ni4NRE steel has the feature of sharp austenite grain coarsening after solid solution treatment at the temperature above 1150 ℃. RE added in the steel has the benefit to restrain grain growth and increase grain growth activation energy.
基金Project(0511021600) supported by the Natural Science Foundation of Henan Province, China
文摘The RE-aluminized coating and pure aluminized coating on 20 carbons steel were prepared by hot dip aluminizing method at 740℃. After diffusion treatment at 850℃for 4 h, the distribution of aluminum and lanthanum elements in the coating was analyzed with energy disperse spectroscopy(EDS) and electron probe microanalyses(EPMA), and the lattice parameter ofα-Fe in the matrix of the coating was measured precisely by X-ray diffractometer(XRD). The results show that RE permeates into the aluminized coating, leads to lattice disturbance and increases the depth of the aluminized coating. On the basis of the results, the expression of the diffusion coefficient of Al atoms is derived from the diffusion flow, and the effect of the high vacancy concentration and high concentration gradient of vacancies on the diffusion of Al atoms was analyzed by establishing the kinetics model of the vacancy mechanism of diffusion. The results show that the high vacancy concentration and high concentration gradient of vacancies in the RE-aluminized processes are the main reason why the diffusion coefficient of Al atoms in RE-aluminizing is bigger than that in pure aluminizing.
文摘The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.