期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Recovery of waste rare earth fluorescent powders by two steps acid leaching 被引量:17
1
作者 Shen-Gen Zhang Min Yang +2 位作者 Hu Liu De-An Pan Jian-Jun Tian 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期609-615,共7页
The effects of the acid leaching and alkali fusion on the leaching efficiency of Y,Eu,Ce,and Tb from the waste rare earth fluorescent powders were investigated in this paper.The results show that hydrochloric acid is ... The effects of the acid leaching and alkali fusion on the leaching efficiency of Y,Eu,Ce,and Tb from the waste rare earth fluorescent powders were investigated in this paper.The results show that hydrochloric acid is better than sulfuric acid in the first acid leaching,and NaOH is better than Na2CO3in the alkali fusion.In the first acid leaching,the Wloss is 20.94%when the waste rare earth fluorescent powders are acid leached in H?concentration 3 mol L-1and S/L ratio 1:3 for 4 h due to red powders dissolved.The better results of the alkali fusion can be got at 800℃ for 2 h when the NaOH is used.The blue powders and the green powders can be dissolved into NaAlO2and oxides such as rare earth oxide(REO).The REO can be dissolved in H?concentration 5 mol L-1,S/L1:10 for 3 h in the second acid leaching.The leaching rates of the Y,Eu,Ce,and Tb are 99.06%,97.38%,98.22%,and 98.15%,respectively.The leaching rate of the total rare earth is 98.60%. 展开更多
关键词 waste rare earth fluorescent powders Two steps acid leaching Alkali fusion
下载PDF
Use of Low Radioactive Rare-earth Waste for Sewage Treatment
2
作者 ZHANGYing WANGXu-mei FENGDan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2003年第1期25-28,共4页
Low radioactive rare earth waste (containing 232 Th,specific activity 5 000 8 000 Bq·kg -1 ) were diluted 20 times by cement,sand and carbide ash and were made into special cement.The radioactivity of... Low radioactive rare earth waste (containing 232 Th,specific activity 5 000 8 000 Bq·kg -1 ) were diluted 20 times by cement,sand and carbide ash and were made into special cement.The radioactivity of this special cement complied with the healthy protect standard for radioactive materials (GB6566 86).Test results showed that this special cement could lower COD,the degradation rate increased as the time went on.In acidic medium,this special cement could remove E Coli effectively.Applying aeration and adding lumps of cement,the degradation of COD versus time complied with Logistic model through fitting by computer.The two “S” curves indicated that aeration and adding lumps of cement had synergistic action on sewage treatment. 展开更多
关键词 the product of low radioactive rare earth waste the degradation rate of COD number of coliform group bacteria
下载PDF
Kinetics study on leaching of rare earth and aluminum from polishing powder waste using hydrochloric acid 被引量:7
3
作者 Xitao Wu Zhijian Wang +5 位作者 Chuping Xia Xuefeng Shi Tianzong Luo Xinjun Bao Rongli Liu Shengzhong Xie 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第9期1009-1018,I0004,共11页
In this study,a novel hydrometallurgical process consisting of hydrochloric acid three-stage countercurrent leaching and solvent extraction was proposed to recover rare earth oxide(REO)from the rare earth polishing po... In this study,a novel hydrometallurgical process consisting of hydrochloric acid three-stage countercurrent leaching and solvent extraction was proposed to recover rare earth oxide(REO)from the rare earth polishing powder waste(REPPW).The effects of HCl concentration,liquid-solid ratio(L/S ratio),temperature and time on the leaching yields of rare earths(in REO)and aluminum(in Al2O3)were studied.The result shows that the leaching yields of REO and Al2O3 are 90.96%and 43.89%respectively under the optimum leaching parameters of HCl concentration=8.00 mol/L,L/S ratio=4 mL/g,leaching temperature=353 K and leaching time=180 min.Meanwhile,the leaching kinetics of REO and Al2O3 were investigated in this study.The leaching behaviors of REO and Al2O3 follow a shrinking sphere/core model and the general leaching process is controlled by the surface chemical reaction.The leaching activation energies of REO and Al2O3 are 9.86 and 13.68 kJ/mol,respectively.The leaching yield of each substance in three-stage countercurrent leaching is improved substantially compared with single-stage leaching,with a change from 90.96%to 95.38%for REO and from 43.89%to 46.22%for Al2O3,respectively.Especially,the total concentration of REO in three-stage countercurrent leaching solution is greatly increased to above 300 g/L,and the acidity of which is decreased to ca.pH=2,which is conducive to subsequent solvent extraction directly.High purity REO(99.92%)is obtained by solvent extraction separation,oxalate precipitation and calcination.The total recovery yield of REO is 85.13%. 展开更多
关键词 rare earth polishing powder waste REPPW Three-stage countercurrent leaching Solvent extraction Kinetics study THERMODYNAMICS
原文传递
A hydrometallurgical method of energy saving type for separation of rare earth elements from rare earth polishing powder wastes with middle fraction of ceria 被引量:13
4
作者 UM Namil HIRATO Tetsuji 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第5期536-542,共7页
This study described a hydrometallurgical method to investigate the separation of rare earth elements(REEs)from rare earth polishing powder wastes(REPPWs)containing large amounts of rare earth oxides with a major ... This study described a hydrometallurgical method to investigate the separation of rare earth elements(REEs)from rare earth polishing powder wastes(REPPWs)containing large amounts of rare earth oxides with a major phase of CeO2 and minor phases of La2O3,Pr2O3,and Nd2O3 using a process devised by the authors.The suggested approach consisted of five processes:the synthesis of NaR E(SO4)2·xH2O from rare earth oxides in Na2SO4-H2SO4-H2 O solutions(Process 1),the conversion of NaR E(SO4)2·xH2O into RE(OH)3 using NaO H(Process 2),and the oxidation of Ce(OH)3 into Ce(OH)4 using air with O2 injection(Process 3),followed by Processes 4 and 5 for separation of REEs by acid leaching using HCl and H2SO4,respectively.To confirm the high yield of NaR E(SO4)2·xH2O in Process 1,experiments were carried out under various Na2SO4 concentrations(0.4–2.5 mol/L),sulfuric acid concentrations(6–14 mol/L),and reaction temperatures(95–125 oC).In addition,the effect of the pH value on the separation of Ce(OH)4 in HCl-H2 O solutions with Ce(OH)4,La-,Pr-,and Nd(OH)3 in Process 4 was also investigated.On the basis of above results,the possibility of effective separation of REEs from REPPWs could be confirmed. 展开更多
关键词 rare earth elements(REEs) rare earth polishing powder wastes(REPPWs) separation sodium cerium sulfate hydrometallurgical process
原文传递
Selective extraction and recovery of rare earth metals from waste fluorescent powder using alkaline roasting-leaching process 被引量:7
5
作者 廖春发 黎振源 +3 位作者 曾颜亮 陈静远 钟立钦 王莉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第10期1008-1013,共6页
Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. Howeve... Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. However, extraction of REM from waste fluorescent powder materials is difficult because of their special aluminate structure. A novel "alkaline roasting-acid leaching" process was developed in this study. The alkaline roasting process mechanism was examined using differential thermal analysis(DTA)-thermogravimetric(TG) measurements, and the roasting product was characterized by XRD analysis. In this process, Al_2O_3 was converted into water soluble NaAlO_2 via alkaline roasting, and NaAlO_ 2 in the roasting product could be easily dissolved in water, while the rare earth oxide(REOs) remained as solid. After filtration, REOs cake was leached using hydrochloric acid to achieve 99.8% of REM recovery. It was concluded that the alkaline roasting-acid leaching process could effectively separate Al_2O_3 and REOs with high REM recovery. 展开更多
关键词 waste rare earth fluorescent powder alkaline roasting leaching
原文传递
Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China
6
作者 Chunfeng Wang Guanfei Chen +3 位作者 Yanchen Zhu Dan Yao Wanfeng Wang Lianjun Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期35-45,共11页
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In t... Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leacha(bility-of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during fgastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs witllt organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3^-, F^-, SO4^2- , and Cl^-) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway. 展开更多
关键词 Assessment rare earth elements Leaching behavior Bioaccessibility Hospital waste
原文传递
Chemical stability of simulated waste forms Zr1–xNdxSiO4–x/2: Influence of temperature, pH and their combined effects
7
作者 王兰 卢喜瑞 +6 位作者 舒小艳 丁艺 易发成 马登生 任卫 边亮 吴彦霖 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期709-715,共7页
The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(4... The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7). 展开更多
关键词 nuclear waste waste form zircon chemical stability temperature pH rare earths
原文传递
Chemical stability of Ce-doped zircon ceramics:Influence of p H,temperature and their coupling effects 被引量:5
8
作者 谢忆 樊龙 +4 位作者 舒小艳 匙芳廷 丁艺 马登生 卢喜瑞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第2期164-171,共8页
Zircon was employed to immobilize simulated tetravalentactinide nuclide(Ce^4+). Zr_(1–x)Ce_xSiO_4(0≤x≤0.10) ceramics were synthesized and their chemical durabilities were investigated systematically. The eff... Zircon was employed to immobilize simulated tetravalentactinide nuclide(Ce^4+). Zr_(1–x)Ce_xSiO_4(0≤x≤0.10) ceramics were synthesized and their chemical durabilities were investigated systematically. The effects of p H and temperature on the chemical durability of the as-prepared compounds were investigated using the MCC-1 static leaching test, and their coupling effects were also explored. It was found that the normalized release rates of Ce in deionized water and alkaline solutions(pH=10) were smaller than those in acid solutions(p H=4). At a certain p H value, the normalized release rate of Ce(LR Ce) increased with the temperature in the initial period. However, the leaching progress almost reached a balance after 14 days, and both of the p H and the temperature had slight impact on the leaching of Ce element. Moreover, the LR_(Ce) were below 10^(–5)g/m^2/d after 42 days, which was lower than those of other nuclear waste forms in all discussed leachates. 展开更多
关键词 high-level radioactive waste waste form zircon chemical durability rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部