期刊文献+
共找到503篇文章
< 1 2 26 >
每页显示 20 50 100
Effect of Rare Earths on Microstructure and Properties of TiC-based Cermet/Cu Alloy Composite Wear Resistant Materials 被引量:2
1
作者 王新洪 邹增大 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第3期375-379,共5页
The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron... The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide. 展开更多
关键词 metal materials TiC based cermet microstructure mechanical properties wear resistance rare earths
下载PDF
Effect of Rare Earth on Microstructure of Vacuum Melting Ni-Based Self-Fluxing Alloy Coatings 被引量:9
2
作者 宣天鹏 闵丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期517-520,共4页
The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase stru... The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating. 展开更多
关键词 metal materals vacuum melting microstructure Ni-based self-fluxing alloy rare earths
下载PDF
Mechanism of Effects of Rare Earths on Microstructure and Properties at Elevated Temperatures of AZ91 Magnesium Alloy 被引量:19
3
作者 张国英 张辉 +1 位作者 高明 魏丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期348-351,共4页
By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were perfor... By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys. 展开更多
关键词 electronic structure alloyING grain boundary aggregation microstructure and properties of magnesium alloy rare earths
下载PDF
Effect of rare earth on the microstructure and mechanical properties of as-cast Cu-30Ni alloy 被引量:9
4
作者 MAO Xiangyang FANG Feng JIANG Jianqing TAN Rongsheng 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期590-595,共6页
Cu-30Ni-xRE (x = 0-0.213) alloys were prepared by a metal mould casting method. The effect of RE on the microstructure and mechanical properties of the alloys was investigated using optical microscope, scanning elec... Cu-30Ni-xRE (x = 0-0.213) alloys were prepared by a metal mould casting method. The effect of RE on the microstructure and mechanical properties of the alloys was investigated using optical microscope, scanning electronic microscope with energy-dispersive spectrometer, X-ray diffraction, and mechanical test. The results show that RE has obvious effect on refining dendrite structure and grain size, as well as on purifying the melting of Cu-30Ni alloy. With the increase of RE content, the ultimate tensile strength, yield strength, and elongation increase at first and then decrease after adding RE more than 0.095 wt.%. Cu-30Ni-0.095RE alloy possesses preferable mechanical properties, i.e., the ultimate tensile strength, yield strength, and elongation are 308 MPa, 125 MPa, and 51.2%, respectively. The microstructure and mechanical properties are worsened with increasing RE content more than 0.095 wt.%. The improvement of mechanical properties of Cu-30Ni-0.095RE alloy is attributed to RE refining microstructure and purifying the matrix. 展开更多
关键词 Cu-Ni alloys rare earth (RE) microstructure mechanical properties
下载PDF
Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy 被引量:5
5
作者 WAN Weiwei HAN Jianmin LI Weijing WANG Jinhua 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期129-132,共4页
The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast all... The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated. The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si. With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down. The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%. 展开更多
关键词 high strength aluminum cast alloy Al-Cu-Mg-Si rare earth elements microstructure mechanical properties
下载PDF
Effect of Trace La Addition on the Microstructure and Mechanical Property of As-cast ADC12 Al-Alloy 被引量:25
6
作者 黄昕 闫洪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期202-205,共4页
The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse ... The effects of addition of La on the microstructure of as-cast ADC12 A1-Alloy were investigated by using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy disperse spectroscopy (EDS). The experimental results showed that the a-A1 and eutectic Si crystals were modified with the addition of 0.3 wt% La. The eutectic Si crystals showed a granular distribution. At the same time, the alloy possessed the best mechanical property. When more than 0.3 wt% La was added to ADC12 aluminum alloy, the microstructure of as-cast alloy was coarsening gradually with the increase of the content of La and the mechanical property decreased. The effect of rare earth La which was added in ADC 12 A1-Alloy for up to 0.9 wt% had been investigated in this study. The dendrites ofADC12 Al-alloy was refined obviously and the morphology of Si crystals showed a particle structure when the addition of La reached 0,3 wt%. Besides, the acicular La-rich intermetallics in the alloy deteriorated the mechanical property of alloy: To avoid this unwanted phase, the amount of added rare earth La must be less than 0.6 wt%. 展开更多
关键词 as-cast ADC12 A1-alloy rare earth microstructure intermetallic compound mechanical property
下载PDF
A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension–Compression yield asymmetry and strain hardening behavior of a Magnesium–Silver–Rare Earth alloy 被引量:5
7
作者 Sourav Mishra F.Khan S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2546-2562,共17页
Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying... Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio. 展开更多
关键词 Magnesium silver rare earth alloy Friction stir processing Ultrafine-grained microstructure Tension to compression yield strength asymmetry Crystallographic texture Strain hardening Kock mecking plots Visco plastic self consistency
下载PDF
Effect of Rare Earth on Microstructure of γ-TiAl Intermetallics 被引量:6
8
作者 孔凡涛 陈子勇 +2 位作者 田竞 陈玉勇 贾均 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第2期163-166,共4页
The rare earth (RE) elements (Ce, La) were added to binary Ti 47% Al alloys (atomic fraction) by Induction Skull Melting. The element Ce of 1.0 atomic percent was added individually, and La of 0.2 atomic percent was ... The rare earth (RE) elements (Ce, La) were added to binary Ti 47% Al alloys (atomic fraction) by Induction Skull Melting. The element Ce of 1.0 atomic percent was added individually, and La of 0.2 atomic percent was added individually. This article studied the influences of rare earth metal (Ce, La) on microstructure of as cast TiAl based alloy by XRD, SEM, EMPA and TEM measurement methodology. The results show that most of rare earth rich phases (AlCe, AlLa) are uniformly distributed in grain boundary in the shape of discontinuous network, and some particles of rare earth rich phases within the grains are mainly ellipsoids. In addition, rare earth element can obviously refine the grain size and the lamellar thickness of as cast TiAl based alloy samples. The grain size of Ti 47Al 1.0Ce 0.2La alloy reaches about 30~80 μm, and the lamellar thickness of its γ phase and α 2 phase are less than 200 and 20 nm, respectively. 展开更多
关键词 metal materials TiAl based alloy microstructure grain size lamellar thickness rare earths
下载PDF
Effect of rare earth Pr on microstructure and mechanical properties of Al_2O_3-SiO_2(sf)/Al-Si composites 被引量:1
9
作者 彭继华 李文芳 +1 位作者 黄芳亮 杜军 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第5期1081-1086,共6页
The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractog... The Al2O3-SiO2(sf)(volume fraction,20%)/Al-12.6Si metal matrix composites(MMCs)with or without rare earth Pr addition were fabricated by infiltration squeeze method.Effect of Pr addition on microstructures and fractographs of Al-Si MMCs was investigated by SEM and TEM.Tensile properties at room temperature and 200℃were tested.It is shown that the addition of Pr is favorable to produce uniform microstructures and modify the eutectic Si crystal effectively.Compounds/intermetallics with high content of Pr are formed at the interface between short fiber and matrix.Yield strength(σ 0.2 ),ultimate tensile strength(σ b)and fracture elongation of Al-Si MMCs are improved by adding suitable amount of Pr.Compared with those values of Al-Si based MMC at 200 ℃,σ 0.2 andσ bof MMC with 0.29%Pr are increased by 33%and 55%,respectively.The tensile fracture surface of Al-Si MMCs with Pr addition presents ductile fracture features. 展开更多
关键词 金属基复合材料 铝硅 二氧化硅 力学性能 显微组织 平方 稀土 氧化铝
下载PDF
Study on Rare Earth-Containing Phases in TiAl Based Alloys Prepared by Non-Equilibrium Solidification Processing 被引量:1
10
作者 马学著 沈军 贾均 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第2期103-106,共4页
Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil t... Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe. 展开更多
关键词 rare earths rapid solidification rare earth rich phase TiAl based alloy microstructure
下载PDF
Study on Particle Size and Electrochemical Properties of Rare Earth Based Hydrogen Storage Alloys 被引量:1
11
作者 刘向东 黄丽宏 +1 位作者 闫淑芳 陈伟东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期363-365,共3页
The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the allo... The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the alloy were investigated. The results indicate that the alloy with particle size of 100 and 150 mesh shows good activation behavior and high discharge capacity (the first discharge capacity and the maximum discharge capacity), but poor cycling stability, low capacity retention and high discharge capacity rate. The Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) alloy with particle size of 150 mesh shows excellent electrochemical properties. 展开更多
关键词 rare earth based hydrogen storage alloy particle size electrochemical property
下载PDF
FORMATION OF GRADIENT COATING OF Fe-BASED ALLOY WITH RARE EARTHS BY PLASMA SURFACING 被引量:1
12
作者 L.J.Shang A.Q.Sun +2 位作者 J.F.Chen C.M.Zhang Q.K.Cai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期713-718,共6页
A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), di... A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing. 展开更多
关键词 rare earth plasma surfacing Fe-base alloy microstructure graded coating
下载PDF
Study on Ignition-Proof AZ91D Magnesium Alloy Added with Rare Earth 被引量:1
13
作者 刘金萍 李华基 薛寒松 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期117-121,共5页
Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production pro... Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising. 展开更多
关键词 AZ91D magnesium alloy mischmetal ignition temperature oxidation film microstructure and mechanical property rare earths
下载PDF
Effects of in-situZrB_2 nanoparticles and scandium on microstructure and mechanical property of 7N01 aluminum alloy
14
作者 Xizhou Kai Yuhui Wang +8 位作者 Ruikun Chen Yanjie Peng Anjun Shi Ran Tao Xiangfeng Liang Guirong Li Gang Chen Xiaojing Xu Yutao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期612-620,I0007,共10页
In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoi... In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoids. The microstructure and mechanical property evolution of the prepared composites and the interaction between ZrB_(2) and Sc were studied in detail. The microstructure investigation shows that the introduction of rare earth scandium(Sc) can promote the distribution of ZrB_(2) nanoparticles, by improving their wettability to the Al melt. Meanwhile, the addition of rare earth Sc also modifies the coarse Al Zn Mg Mn Fe precipitated phases, refines the matrix grains and generates high-melting Al_3(Sc,Zr)/Al_3Sc nanodispersoids. Tensile tests of the composites show that with the combinatorial introduction of ZrB_(2) and Sc, the strength and ductility of the composites are improved simultaneously compared with the corresponding 7N01 alloy, ZrB_(2) /7N01 composite and Sc/7N01 alloy. And the optimum contents of ZrB_(2) and Sc are 3 wt% and 0.2 wt% in this study. The yield strength, ultimate strength and elongation of(3 wt% ZrB_(2) +0.2 wt% Sc)/7N01 composite are 477 MPa, 506 MPa and 9.8%, increased about 18.1%, 12.2%and 38% compared to 7N01 alloy. Furthermore, the cooperation strengthening mechanisms of ZrB_(2) and Sc are also discussed. 展开更多
关键词 7N01 aluminum alloy In-situ ZrB_(2)nanoparticles rare earth Sc microstructure Mechanical property Mechanism
原文传递
Improvement of Ductility of Powder Metallurgy Titanium Alloys by Addition of Rare Earth Element 被引量:8
15
作者 Yong LIU Lifang CHEN +3 位作者 Weifeng WEI Huiping TANG Bin LIU Baiyun HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期465-469,共5页
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b... Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct. 展开更多
关键词 Powder metallurgy titanium alloy Mechanical properties microstructure rare earth element
下载PDF
Influence of rare earth cerium on the microstructures and performances of Al-Fe alloy 被引量:2
16
作者 LI ShiXin JIANG HongXiang +5 位作者 LI YanQiang ZHANG LiLi SUN Hao HE Jie JIANG HaiCang ZHAO JiuZhou 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3317-3327,共11页
The effects of rare earth addition on the microstructures as well as the tensile performances and electrical conductivity of Al alloys have attracted increasing attention recently.However,little research has been carr... The effects of rare earth addition on the microstructures as well as the tensile performances and electrical conductivity of Al alloys have attracted increasing attention recently.However,little research has been carried out to investigate the influence of minor Ce(the Ce additive amount is below 0.1 wt.%).In this study,experiments have been performed to explore the effects of minor Ce on the microstructures as well as the tensile properties and the electrical conductivity of Al-Fe alloy.The results demonstrate that minor rare earth Ce addition not only leads to the α-Al refinement and the modification of Al_(13)Fe_(4) minority phase,but also decreases the solid solubility of Si.The grain refinement induced by Ce addition has a negligible influence on the tensile strength and yield strength,while the ductility and conductivity can be simultaneously ascended by adding rare earth Ce.The modification of Al_(13)Fe_(4) minority phase is responsible for the increment of ductility,and the diminution of Si solid solubility in the Al matrix leads to the increase of electrical conductivity.This work provides a strategy for concurrently improving the tensile performances and electrical conductivity of aluminum alloy. 展开更多
关键词 aluminum alloy rare earth cerium microstructure conductivity property tensile performance
原文传递
Effect of Neodymium on As-Cast Microstructure and Mechanical Properties of AZ31 Wrought Alloy 被引量:5
17
作者 李明照 范晋平 +2 位作者 张俊远 刘旭光 许并社 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期188-193,共6页
Nd in the form of powder or intermediate alloy was added to AZ31 wrought alloy. The as-obtained alloy was characterized and tested with respect to its microstructure and mechanical properties. The relationship between... Nd in the form of powder or intermediate alloy was added to AZ31 wrought alloy. The as-obtained alloy was characterized and tested with respect to its microstructure and mechanical properties. The relationship between the microstructure,mechanical properties and tensile fracture mechanism were discussed, with relevant alloys as reference for comparison. Experimental results show that the same quantity of Nd was added into AZ31 in powder form or in intermediate alloy, the absorption rate of Nd reached only 10.8% for the former case and as high as 95% for the later case. Pure Nd powder was added, no new compound was detected, but it served as reductant and purified alloy melt, resulting in improving the tensile strength while Nd was added into AZ31 as Mg-Nd intermediate alloy. The compound Al2Nd and Mg12Nd were formed in magnesium alloy, which were distributed in the matrix in the shapes of strip and particle, evidently refined the as-cast structure. The as-cast tensile strength (228 MPa) of adding pure Nd powder approximated to the figure (245 MPa) of adding Mg-Nd intermediate alloy. The tensile fracture mechanism of as-cast AZ31 transformed from cleavage fracture into quasi-cleavage fracture. 展开更多
关键词 magnesium alloy Nd As-cast microstructure mechanical property rare earths
下载PDF
Effect of cerium on microstructure,wetting and mechanical properties of Ag-Cu-Ti filler alloy 被引量:6
18
作者 杨长勇 徐九华 +2 位作者 丁文锋 陈珍珍 傅玉灿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期1051-1055,共5页
Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that additi... Effect of cerium on microstructure,mechanical and wetting properties of Ag-Cu-Ti filler alloy was researched with optical microscopy,scanning electron microscopy and X-ray diffraction.The results indicated that addition of cerium accelerated alloying of the filler alloy,enlarged supercooled region,caused microstructural refinement and dispersed distribution of intermetallic compounds.It resulted in the increase in microhardness and shear strength of Ag-Cu-Ti filler alloy.At the same time,cerium improved wet... 展开更多
关键词 CERIUM microstructure Ag-Cu-Ti alloy mechanical property rare earths
下载PDF
Influence of Annealing Treatment on Microstructure and Cycling Stability of La-Rich Ml(NiCoMnAl)_5 Alloy Electrode for Ni/MH Batteries 被引量:1
19
作者 马志鸿 邱巨峰 +1 位作者 陈立新 雷永泉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期84-88,共5页
The crystallographic structure, microstructure, composition homogeneity and electrode charge-discharge cycling stability were investigated of the as-cast and annealed La-rich mischmetal (designating Ml)-based hydrogen... The crystallographic structure, microstructure, composition homogeneity and electrode charge-discharge cycling stability were investigated of the as-cast and annealed La-rich mischmetal (designating Ml)-based hydrogen storage alloy with a composition of MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3). X-ray diffraction analysis shows that the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy is composed of the dominant phase with a CaCu_5-type hexagonal structure and small amounts of the second phase with a La_2Ni_7-type structure. The annealing heat treatment conducted at 1273 K for 10 h results in decrease of the crystal lattice strain and composition segregation, disappearance of the dendrite structure and growth of the crystal grain of the MlNi_(3.55)Co_(0.75)Mn_(0.4)Al_(0.3) alloy. The annealing causes the cycle life to be increased by about 30% over the as-cast alloy electrode. The cycling stability of the alloy electrode is improved significantly upon annealing. The cause of the improvement in the cycling stability was discussed based on the alloy composition distribution and microstructure changes due to annealing. 展开更多
关键词 La-rich mischmetal hydrogen storage alloy electrode ANNEALING microstructure electrochemical property rare earths
下载PDF
Effect of Adding Extruded Mg-Mischmetal Intermediate Alloy on Microstructure and Properties of Die-Casting Magnesium Alloy AZ91D 被引量:1
20
作者 张奎 徐玉磊 +3 位作者 李兴刚 张凯 崔代金 雷健 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期555-560,共6页
The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were in... The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature. 展开更多
关键词 AZ91D magnesium alloy intermediate alloy die casting microstructure mechanical property rare earths
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部