Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excel...In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excellent strength-ductility balance(UTS of 345±2.0 MPa,TYS of 301±5.0 MPa and EL of 9.2±1.9%),which is better than that of many Mg-RE wrought alloys with higher RE concentration and even comparable to that of 6061 Al wrought alloy.A long-range chain-like structure consisting ofβphase,βH phase,βM phase and zig-zag atomic columns is observed for the first time in the studied alloy.The combined process of hot extrusion and hot rolling boosts the formation of deformed grains and low angle grain boundaries,and makes the deformed grains dominate in the alloy strengthening.Under this circumstance,the following ageing generates a novel heterogeneous structure comprising the long-range chain-like structure with broad interparticle spacing and the spacious precipitate-free zones in the deformed grains,which plays a key role in the concurrent strengthening and toughening of the alloy.The present study demonstrates that the deformed grains with long-range chain-like structures and precipitate-free zones is desirable microstructure for the low RE containing Mg alloys to achieve high strength-ductility synergy.展开更多
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne...Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.展开更多
Magnesium and its alloys are significant superior metallic materials for structural components in automobile and aerospace industries due to their excellent physicomechanical properties.The Mg–rare earth(RE)systems h...Magnesium and its alloys are significant superior metallic materials for structural components in automobile and aerospace industries due to their excellent physicomechanical properties.The Mg–rare earth(RE)systems have attracted great interests because RE additions can improve both the deformability and the strength of Mg alloys through solid solution strengthening and precipitation hardening mechanisms.This paper focuses on the interface stability,together with thermodynamics and kinetics of nucleation and growth of the key phases and matrix phases in Mg–RE alloys.In this paper,the theory and recent advances on Mg–RE alloys,especially for the interface stability,thermodynamics and kinetics of nucleation and growth of the key phases and matrix phases,together with their relationships with micro-structures,and macroscopic properties,are reviewed.By combining the thermodynamics/kinetics integrated simulations with various advanced experimental techniques,“reverse”design of Mg–RE alloys starting from the target service performance is put forward as a kind of scientific paradigm with rational design.展开更多
With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, researc...With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis.展开更多
By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were perfor...By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys.展开更多
The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),...The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.展开更多
The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optim...The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optimum processing parameters on corrosion resistance of RECCs, such as density of treating solution, temperature and time of coating formation were discussed. Protective performance of conversion coatings on magnesium alloy was evaluated by moisture/heating test, anodic polarization, etc. The results show that Ce-based RECCs under moisture/heating condition can remain intact, with high coverage and no obvious corrosion phenomenon. Corrosion potential increases and passive phenomenon occurs while current density decreases, therefore Ce-based RECCs can improve corrosion resistance of AZ91 magnesium alloy. The morphology of Ce-based RECCs prepared under optimum process through SEM observation is found to be a few particles coherent to the base coating, and the coating has no cracks and exhibits apparent corrosion resistance during corrosion courses of AZ91 magnesium alloy.展开更多
Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morpholog...Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.展开更多
Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cr...Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.展开更多
The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increas...The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.展开更多
In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were ch...In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were characterized by optical microscopy (OM), scan electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), tensile and creep tests. The results show that Ce addition has little effect on the mechanical properties of AZ91 alloy at high temperature, while Y and Nd addition play important role in the improvement of creep resistance. New alloys containing Y or Nd with excellent high temperature performance are selected to produce cylinder head cover of high power diesel engine of Red Flag car and oil pan of Besturn car. The new magnesium alloys with RE addition for die-casting have potential to produce power-train parts, and can greatly decrease weight.展开更多
The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carri...The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.展开更多
Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleani...Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.展开更多
The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X...The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.展开更多
The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried ou...The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried out under different temperatures. The experimental resultsshow that at room temperature the tensile strength of AM60B can be improved with the addition ofrare earth elements. The ductility of which at room or elevated temperature (120 deg C) can also beimproved, and the ductility is to some extent in proportion with the amount of rare earth elements.The ductility at 120 deg C is better than that at room temperature. The microstructure graphsdemonstrate that appropriate amount of rare earth elements (0.1 percent-0.2 percent, mass fraction)can fine AM60B's grain and improve its ductility.展开更多
The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are bette...The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are better than those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear to severe wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of the magnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.展开更多
The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that th...The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.展开更多
Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying...Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio.展开更多
Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production pro...Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising.展开更多
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金This work is supported by Beijing Municipal Natural Science Foundation(2202004)National Natural Science Foundation of China(51801048)Basic Research Fund for Newly Enrolled Teachers.
文摘In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excellent strength-ductility balance(UTS of 345±2.0 MPa,TYS of 301±5.0 MPa and EL of 9.2±1.9%),which is better than that of many Mg-RE wrought alloys with higher RE concentration and even comparable to that of 6061 Al wrought alloy.A long-range chain-like structure consisting ofβphase,βH phase,βM phase and zig-zag atomic columns is observed for the first time in the studied alloy.The combined process of hot extrusion and hot rolling boosts the formation of deformed grains and low angle grain boundaries,and makes the deformed grains dominate in the alloy strengthening.Under this circumstance,the following ageing generates a novel heterogeneous structure comprising the long-range chain-like structure with broad interparticle spacing and the spacious precipitate-free zones in the deformed grains,which plays a key role in the concurrent strengthening and toughening of the alloy.The present study demonstrates that the deformed grains with long-range chain-like structures and precipitate-free zones is desirable microstructure for the low RE containing Mg alloys to achieve high strength-ductility synergy.
基金support of the National Natural Science Foundation of China(Grant number 52071088)。
文摘Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.
基金This work was supported by the National Natural Foundation China(51671118 and 51871143)the Science and TechnologyCommittee of Shanghai(19010500400).
文摘Magnesium and its alloys are significant superior metallic materials for structural components in automobile and aerospace industries due to their excellent physicomechanical properties.The Mg–rare earth(RE)systems have attracted great interests because RE additions can improve both the deformability and the strength of Mg alloys through solid solution strengthening and precipitation hardening mechanisms.This paper focuses on the interface stability,together with thermodynamics and kinetics of nucleation and growth of the key phases and matrix phases in Mg–RE alloys.In this paper,the theory and recent advances on Mg–RE alloys,especially for the interface stability,thermodynamics and kinetics of nucleation and growth of the key phases and matrix phases,together with their relationships with micro-structures,and macroscopic properties,are reviewed.By combining the thermodynamics/kinetics integrated simulations with various advanced experimental techniques,“reverse”design of Mg–RE alloys starting from the target service performance is put forward as a kind of scientific paradigm with rational design.
基金financial support from the National Key R&D Program of China (2022YFB3506200)the National Nature Science Foundation of China (22122113)。
文摘With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis.
基金Project supported by the National Natural Science Foundation of China(50671069,50571071)Science Research Plan of Liaoning Province Education Bureau(05L297)+1 种基金Postdoctor Science Foundation of China(2004036113)the Doctor Starting Project and the Experiment Center of Shenyang Normal University
文摘By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys.
文摘The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.
文摘The feasibility of forming pollution-free and environmentally benign Ce-based rare earth conversion coatings (short for RECCs) on AZ91 magnesium alloy to enhance corrosion resistance was studied. The effect of optimum processing parameters on corrosion resistance of RECCs, such as density of treating solution, temperature and time of coating formation were discussed. Protective performance of conversion coatings on magnesium alloy was evaluated by moisture/heating test, anodic polarization, etc. The results show that Ce-based RECCs under moisture/heating condition can remain intact, with high coverage and no obvious corrosion phenomenon. Corrosion potential increases and passive phenomenon occurs while current density decreases, therefore Ce-based RECCs can improve corrosion resistance of AZ91 magnesium alloy. The morphology of Ce-based RECCs prepared under optimum process through SEM observation is found to be a few particles coherent to the base coating, and the coating has no cracks and exhibits apparent corrosion resistance during corrosion courses of AZ91 magnesium alloy.
基金Project supported by the Science and Technology Foundation of Sci. & Tec. Office of Qinhuangdao City (200507)
文摘Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.
文摘Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.
文摘The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.
基金Project(2006AA03Z520) supported by the National High-tech Research and Development Program of China
文摘In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were characterized by optical microscopy (OM), scan electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), tensile and creep tests. The results show that Ce addition has little effect on the mechanical properties of AZ91 alloy at high temperature, while Y and Nd addition play important role in the improvement of creep resistance. New alloys containing Y or Nd with excellent high temperature performance are selected to produce cylinder head cover of high power diesel engine of Red Flag car and oil pan of Besturn car. The new magnesium alloys with RE addition for die-casting have potential to produce power-train parts, and can greatly decrease weight.
基金[The work is financially supported by "973" key foundation of China (No. 2000067202).]
文摘The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.
文摘Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.
基金Project(2004BB8429) supported by Chongqing Municipal Science and Technology Commission, China
文摘The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.
基金The program is financially supported by National Key Basic Research and Development Program of China "973"(No 2000067202).]
文摘The effects of rare earth elements on the microstructure and properties ofmagnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added toAM60B and the tensile tests were carried out under different temperatures. The experimental resultsshow that at room temperature the tensile strength of AM60B can be improved with the addition ofrare earth elements. The ductility of which at room or elevated temperature (120 deg C) can also beimproved, and the ductility is to some extent in proportion with the amount of rare earth elements.The ductility at 120 deg C is better than that at room temperature. The microstructure graphsdemonstrate that appropriate amount of rare earth elements (0.1 percent-0.2 percent, mass fraction)can fine AM60B's grain and improve its ductility.
文摘The influence of various rare-earth contents on the friction and wear characteristics of magnesium alloy AZ91D was studied. The results show that the wear resistance properties of rare-earth magnesium alloys are better than those of the matrix alloy under the testing conditions. Magnesium alloys undergo transition from mild wear to severe wear. The addition of rare earths refines the structure of alloys, improves the comprehensive behaviors of the magnesium alloys, increases the stability of oxidation films on worn surfaces, enhances the loading ability of rare-earth magnesium alloys, and delays the transition from mild wear to severe wear effectively.
基金supported by the PRFU national project under Grant Agreement No.B00L02UN280120180005
文摘The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.
基金Department of Science and Technology,India[grant number of DST/TDT/AMT/2017/211(G)(MEE/18-19/412/DSTX/SUSH)for the financial supportFIST grant,Department of Science and Technology,India[grant number SR/FST/ET11-059/2012(G)]for funding electron microscope facility。
文摘Existence of tension–compression yield asymmetry is a serious limitation to the load bearing capablities of Magnesium alloys in a number of light weight structural applications.The present work is aimed at nullifying the tension to compression asymmetry problem and strain hardening anomalies in a Magnesium–Silver–Rare Earth alloy by engineering different levels of microstructural conditions via friction stir processing and post process annealing.The existence and extent of yield asymmetry ratio in the range of microstructural conditions was experimentally obtained through quasistatic tensile and compression tests.The yield asymmetry problem was profoundly present in specimens of coarse grained microstructures when compared to their fine grained and ultra fine grained counterparts.The impact of the microstructure and associated mechanisms of plasticity on the macroscopic strain hardening behavior was established by Kock–Mecking’s analysis.Crystal plasticity simulations using Viscoplastic Self Consistency approach revealed the consequential role of extension twinning mechanism for the existence of yield asymmetry and anomalies in strain hardening behavior.This was especially dominant with coarsening of grain size.Electron Microscopy and characterization were conducted thoroughly in partially deformed specimens to confirm the predictions of the above simulations.The role of crystallographic texture for inducing the polarity to Tension–Compression yield asymmetry was corroborated.A critical grain size in Magnesium–Silver–Rare earth alloy was hereby established which could nullify influences of extension twinning in yield asymmetry ratio.
文摘Magnesium alloy is prone to burning during its melting and casting processes in air, which is a major factor of obstructing its application. Fluxes and cover gases are currently used for the melting and production processes, and semi-solid casting is also used to shape composites made of magnesium alloy, but there still remain many problems. Alloying is a promising method of preventing magnesium from burning. The effect of RE additions on the ignition temperature of AZ91D magnesium alloy was investigated. The changes of the quality of oxidation film and the as-cast microstructure were analyzed, and the mechanical property was compared with that without rare earth. For AZ91D with RE in the range of 0.08% to 0.12%. It is shown that the ignition temperature point can be greatly heightened, the quality of oxidation film is obviously improved, the as-cast microstructure is refined greatly, and the mechanical property is bettered a little, therefore, such an alloy is promising.