Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)h...Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)have demonstrated their effectiveness in tailoring the corrosion and mechanical behavior of Mg alloys.This study methodically investigated the impacts of scandium(Sc)and terbium(Tb)in tailoring the corrosion resistance,mechanical properties,and biocompatibility of Mg–0.5Zn–0.35Zr–0.15Mn(MZZM)alloys fabricated via casting and hot extrusion.Results indicate that addition of Sc and Tb improved the strength of MZZM alloys via grain size reduction and solid solution strengthening mechanisms.The extruded MZZM–(1–2)Sc–(1–2)Tb(wt.%)alloys exhibit compressive strengths within the range of 336–405 MPa,surpassing the minimum required strength of 200 MPa for bone implants by a significant margin.Potentiodynamic polarization tests revealed low corrosion rates of as–cast MZZM(0.25 mm/y),MZZM–2Tb(0.45 mm/y),MZZM–1Sc–1Tb(0.18 mm/y),and MZZM–1Sc–2Tb(0.64 mm/y),and extruded MZZM(0.17 mm/y),MZZM–1Sc(0.15 mm/y),MZZM-2Sc(0.45 mm/y),MZZM-1Tb(0.17 mm/y),MZZM-2Tb(0.10 mm/y),MZZM–1Sc-1Tb(0.14 mm/y),MZZM-1Sc-2Tb(0.40 mm/y),and MZZM–2Sc–2Tb(0.51 mm/y)alloys,which were found lower compared to corrosion rate of high-purity Mg(~1.0 mm/y)reported in the literature.Furthermore,addition of Sc,or Tb,or Sc and Tb to MZZM alloys did not adversely affect the viability of SaOS2 cells,but enhanced their initial cell attachment,proliferation,and spreading shown via polygonal shapes and filipodia.This study emphasizes the benefits of incorporating Sc and Tb elements in MZZM alloys,as they effectively enhance corrosion resistance,mechanical properties,and biocompatibility simultaneously.展开更多
A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mech...A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mechanical properties of these alloys were studied. The results indicate that the addition of RE (La, Pr, Ce) leads to the formation of rodshaped intermetallic compound Al2Zn2La distributed in the matrix. Al2Zn2La induces reduction of the laminar spacing and causes refinement of the microstructure. Therefore, this compound improves the strength of alloys at a high temperature.展开更多
To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La wer...To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La were prepared by mechanical alloying.The aim of this research is to investigate the effects of the addition of La on the microstructures,alloying process and melting properties of(Ag-Cu28)-30Sn alloys.The results show that the addition of La produces no new phase.A trace amount of La addition can effectively refine the grain size,but the excessive addition of 1.0 wt.% La inhibits the alloying process.The influence of La on the melting temperatures of solder alloys is negligible.However,the trace addition of 0.5 wt.% La can distinctly reduce the fusion zone and improve the melting property of(Ag-Cu28)-30Sn alloys.展开更多
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b...Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.展开更多
The electrodeposition of rare earth metals and their alloys in organic electrolytes are reviewed. The solvents, electrolytes and operetating conditions are discussed. It is concluded that exploring the rare earth salt...The electrodeposition of rare earth metals and their alloys in organic electrolytes are reviewed. The solvents, electrolytes and operetating conditions are discussed. It is concluded that exploring the rare earth salt, which can be highly soluble in organic solvents and easily dehydrated, is the key to the pracitical utilization of electrodeposition of rare earth metals and their alloys in organic electrolytes.展开更多
Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were inve...Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...展开更多
The effect of rare earths (RE) ranging from 0.1% to 1.2%(mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys re...The effect of rare earths (RE) ranging from 0.1% to 1.2%(mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys remarkably declines with an increase of RE addition. The causes of the decline are as follows: First, grain coarsening of Mg-Al alloys caused by RE addition reduces the fracture strain required for hot crack initiation. Second, RE reduces the eutectic microstructure of Mg- Al alloys, and as a result, shortens the time that the feeding channel remains open, making it difficult to feed the alloy. Furthermore, RE elevates the eutectic reaction temperature, which leads to the decrease in the strength of the interdendritic liquid film at the late stage of solidification. Third, when a-Mg dendrites form continuous skeletons, the interdendritic Al11 RE3 phase tends to block the feeding channels and increases the difficulty of feeding. Last, the shrinkage ratio discrepancy between Al11RE3 phases and α-Mg matrix is prone to cause shrinkage stress and promote hot crack initiation.展开更多
A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al ...A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al rich alloys and to the effects of rare earth additions on their properties. A summary of the experimental work carried out by our research group on several binary and ternary alloys is reported: that is Mg RE, Al RE, and Mg RE RE′ and Al RE RE′ with two different rare earth metals. A number of regularities observed in the formation and in the crystallochemistry of binary and ternary Mg rich or Al rich phases are summarised and discussed. Their application to a fine planning of alloys having a well defined structure is suggested.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increas...The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.展开更多
A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5...A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1).展开更多
In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were ch...In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were characterized by optical microscopy (OM), scan electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), tensile and creep tests. The results show that Ce addition has little effect on the mechanical properties of AZ91 alloy at high temperature, while Y and Nd addition play important role in the improvement of creep resistance. New alloys containing Y or Nd with excellent high temperature performance are selected to produce cylinder head cover of high power diesel engine of Red Flag car and oil pan of Besturn car. The new magnesium alloys with RE addition for die-casting have potential to produce power-train parts, and can greatly decrease weight.展开更多
Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleani...Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.展开更多
The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundari...The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro- hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resis tance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.展开更多
Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil t...Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.展开更多
The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstra...The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.展开更多
The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that th...The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.展开更多
The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the allo...The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the alloy were investigated. The results indicate that the alloy with particle size of 100 and 150 mesh shows good activation behavior and high discharge capacity (the first discharge capacity and the maximum discharge capacity), but poor cycling stability, low capacity retention and high discharge capacity rate. The Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) alloy with particle size of 150 mesh shows excellent electrochemical properties.展开更多
The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 b...The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.展开更多
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金the financial support provided by the Australian Research Council(ARC)through the Future Fellowship(FT160100252)the Discovery Project(DP170102557)for this research。
文摘Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)have demonstrated their effectiveness in tailoring the corrosion and mechanical behavior of Mg alloys.This study methodically investigated the impacts of scandium(Sc)and terbium(Tb)in tailoring the corrosion resistance,mechanical properties,and biocompatibility of Mg–0.5Zn–0.35Zr–0.15Mn(MZZM)alloys fabricated via casting and hot extrusion.Results indicate that addition of Sc and Tb improved the strength of MZZM alloys via grain size reduction and solid solution strengthening mechanisms.The extruded MZZM–(1–2)Sc–(1–2)Tb(wt.%)alloys exhibit compressive strengths within the range of 336–405 MPa,surpassing the minimum required strength of 200 MPa for bone implants by a significant margin.Potentiodynamic polarization tests revealed low corrosion rates of as–cast MZZM(0.25 mm/y),MZZM–2Tb(0.45 mm/y),MZZM–1Sc–1Tb(0.18 mm/y),and MZZM–1Sc–2Tb(0.64 mm/y),and extruded MZZM(0.17 mm/y),MZZM–1Sc(0.15 mm/y),MZZM-2Sc(0.45 mm/y),MZZM-1Tb(0.17 mm/y),MZZM-2Tb(0.10 mm/y),MZZM–1Sc-1Tb(0.14 mm/y),MZZM-1Sc-2Tb(0.40 mm/y),and MZZM–2Sc–2Tb(0.51 mm/y)alloys,which were found lower compared to corrosion rate of high-purity Mg(~1.0 mm/y)reported in the literature.Furthermore,addition of Sc,or Tb,or Sc and Tb to MZZM alloys did not adversely affect the viability of SaOS2 cells,but enhanced their initial cell attachment,proliferation,and spreading shown via polygonal shapes and filipodia.This study emphasizes the benefits of incorporating Sc and Tb elements in MZZM alloys,as they effectively enhance corrosion resistance,mechanical properties,and biocompatibility simultaneously.
基金Project supported by Heilongjiang Province Key Technologies R&D Project (GC06A212)
文摘A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mechanical properties of these alloys were studied. The results indicate that the addition of RE (La, Pr, Ce) leads to the formation of rodshaped intermetallic compound Al2Zn2La distributed in the matrix. Al2Zn2La induces reduction of the laminar spacing and causes refinement of the microstructure. Therefore, this compound improves the strength of alloys at a high temperature.
基金Nanjing University of Technology for providing financial support under the BSCX grant No.200806
文摘To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La were prepared by mechanical alloying.The aim of this research is to investigate the effects of the addition of La on the microstructures,alloying process and melting properties of(Ag-Cu28)-30Sn alloys.The results show that the addition of La produces no new phase.A trace amount of La addition can effectively refine the grain size,but the excessive addition of 1.0 wt.% La inhibits the alloying process.The influence of La on the melting temperatures of solder alloys is negligible.However,the trace addition of 0.5 wt.% La can distinctly reduce the fusion zone and improve the melting property of(Ag-Cu28)-30Sn alloys.
文摘Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.
文摘The electrodeposition of rare earth metals and their alloys in organic electrolytes are reviewed. The solvents, electrolytes and operetating conditions are discussed. It is concluded that exploring the rare earth salt, which can be highly soluble in organic solvents and easily dehydrated, is the key to the pracitical utilization of electrodeposition of rare earth metals and their alloys in organic electrolytes.
基金Project Financially supported by Major State Basic Research Development Program of China (2007CB616903)
文摘Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...
文摘The effect of rare earths (RE) ranging from 0.1% to 1.2%(mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys remarkably declines with an increase of RE addition. The causes of the decline are as follows: First, grain coarsening of Mg-Al alloys caused by RE addition reduces the fracture strain required for hot crack initiation. Second, RE reduces the eutectic microstructure of Mg- Al alloys, and as a result, shortens the time that the feeding channel remains open, making it difficult to feed the alloy. Furthermore, RE elevates the eutectic reaction temperature, which leads to the decrease in the strength of the interdendritic liquid film at the late stage of solidification. Third, when a-Mg dendrites form continuous skeletons, the interdendritic Al11 RE3 phase tends to block the feeding channels and increases the difficulty of feeding. Last, the shrinkage ratio discrepancy between Al11RE3 phases and α-Mg matrix is prone to cause shrinkage stress and promote hot crack initiation.
文摘A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al rich alloys and to the effects of rare earth additions on their properties. A summary of the experimental work carried out by our research group on several binary and ternary alloys is reported: that is Mg RE, Al RE, and Mg RE RE′ and Al RE RE′ with two different rare earth metals. A number of regularities observed in the formation and in the crystallochemistry of binary and ternary Mg rich or Al rich phases are summarised and discussed. Their application to a fine planning of alloys having a well defined structure is suggested.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
文摘The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys.The amount of each rare earth element is controlled below 0.4 wt.%in order not to increase the cost of alloy largely.The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored.The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25-30%at room temperature.Moreover,these alloys exhibit much better corrosion resistance than AZ31 alloy.The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems.The deformation becomes more homogeneous and the resultant textures after deformation are weakened.
文摘A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1).
基金Project(2006AA03Z520) supported by the National High-tech Research and Development Program of China
文摘In order to meet the demands of high temperature components in automobile, the microstructure and mechanical properties of several new die-casting AZ91-rare earth (RE) magnesium alloys were studied. The alloys were characterized by optical microscopy (OM), scan electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), tensile and creep tests. The results show that Ce addition has little effect on the mechanical properties of AZ91 alloy at high temperature, while Y and Nd addition play important role in the improvement of creep resistance. New alloys containing Y or Nd with excellent high temperature performance are selected to produce cylinder head cover of high power diesel engine of Red Flag car and oil pan of Besturn car. The new magnesium alloys with RE addition for die-casting have potential to produce power-train parts, and can greatly decrease weight.
文摘Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.
基金the Natural Science Foundation of Shanxi Province!991054
文摘The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro- hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resis tance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.
文摘Microstructure evolution of rare earth rich phase of rapidly-solidified (RS) TiAl based alloys was investigated. The two rapid-solidification techniques employed are melt-spinning technique (MS) and Hammer-and-Anvil technique (HB). MS ribbons and HA foils were obtained in the experiment. The results demonstrate that with the increasing of cooling rates of TiAl based alloys great changes are taken place in the microstructures of rare earth rich phase, from scattering mainly on grain boundaries of as-cast ingot to distributing homogeneously as very fine fibers or powders (nanometer grade) on the matrix. The fine paralleling second phase fibers in the HA foils are considered to be connected with gamma/alpha (2) lamellar colonies. Selected area electronic diffraction (SAED) patterns of the rare earth rich phase is in accordance with that of intermetallic AlCe.
基金supported by the Science and Technology Payoffs Transformation Program of Jiangsu Province (DA2006034)the Program of National College Student Creative Experiment (081053309)
文摘The corrosion behavior of BFe10-1-1 alloy with different rare earth (RE) contents in simulated flowing marine water was investigated by X-ray diffractometer and scanning electron microscope (SEM). It was demonstrated that the corrosion rate of BFel0-1-1 alloy with the same chemical compositions in faster flow velocity of marine water was higher than that in a lower flow velocity of marine water. Fixing the flow velocity, BFe 10-1-1 alloy had the best flushing corrosion resistance when the RE content was 0.04wt.%. The consequence of such good corrosion resistance was attributed to the formation of compact protective film on alloy surface containing RE phase such as CeNis. The RE-contained film combines with other corrosion products firmly, which was difficult to fall off from the alloy surface in the flowing marine water. Additionally, SEM analysis confirmed that pitting mechanism, which would be transformed to spalling mechanism gradually with further increasing RE content, was the prevalent mechanism when the alloy contained 0.04wt.%RE.
基金supported by the PRFU national project under Grant Agreement No.B00L02UN280120180005
文摘The corrosion behaviour of as-cast binary Mg–0.3 Ce,Mg–1.44 Nd,Mg–0.63 Gd and Mg–0.41 Dy(wt%)alloys was investigated in DMEM+10%FBS solution using electrochemical and weight loss tests.The results revealed that the alloys with heavy RE elements(Gd and Dy)exhibited the lowest corrosion rate compared to the alloys with light RE elements(Ce and Nd).The cytocompatibility of the Mg–RE alloys was assessed via live/dead straining after 3 and 7 days.The results show that Mg–0.63 Gd alloy is a suitable candidate for biomedical applications.
文摘The rare earth based hydrogen storage alloys Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) were chosen as objects of investigation in this paper. The effects of particle size on electrochemical properties of the alloy were investigated. The results indicate that the alloy with particle size of 100 and 150 mesh shows good activation behavior and high discharge capacity (the first discharge capacity and the maximum discharge capacity), but poor cycling stability, low capacity retention and high discharge capacity rate. The Ml_ 0.7Mm_ 0.3(Ni_ 3.55Co_ 0.75Mn_ 0.4Al_ 0.3) alloy with particle size of 150 mesh shows excellent electrochemical properties.
文摘The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints.