The pegmatite province of the Southeastern Desert (SED) is part of a pegmatite district that extends from Egypt (extends to 1200 km2). Rare metal pegmatites are divided into (1) unzoned, Sn-mineralized; (2) zoned Li, ...The pegmatite province of the Southeastern Desert (SED) is part of a pegmatite district that extends from Egypt (extends to 1200 km2). Rare metal pegmatites are divided into (1) unzoned, Sn-mineralized; (2) zoned Li, Nb, Ta and Be-bearing; and (3) pegmatites and pegmatites containing colored, gem-quality tourmaline. The Rb/Sr data reflect a crustal origin for the rare metal pegmatites and indicate that the original SED magma was generated during the peak of regional metamorphism and predates the intrusion of post-tectonic leucogranites. These bodies developed an early border zone consisting of coarse to very coarse muscovite+quartz+alkali feldspar, followed by an intermediate zone of dominant quartz+feldspar+muscovite rock. Garnet, tourmaline, beryl, galena, pyrite, amblygonite, apatite and monazite are rare accessories in both zones. Cassiterite tends to concentrate in replacement zones and along fractures in albite+quartz+muscovite-rich portions. The highest concentrations of cassiterite occur in irregular greisenized zones which consist dominantly of micaceous aggregates of green Li-rich muscovite, quartz, albite and coarse-grained cassiterite. The different metasomatic post-solidification alterations include sodic and potassic metasomatism, greisenization and tourmalinization. Geochemically, the pegmatite-generating granites have a metaluminous composition, showing a differentiation trend from coarse-grained, unfractionated plagioclase-rich granite towards highly fractionated fine- to medium-grained, local albite-rich rock. Economically important ore minerals introduced by volatile-rich, rare metal-bearing fluids, either primarily or during the breakdown of the primary mineral assemblages, are niobium-tantalum oxides, Sn-oxides (cassiterite), Li-silicates (petalite, spodumene, euctyptite, and pollucite), Li-phosphates (amblygonite, montebrasite and lithopilite) and minor REE-minerals (Hf-zircon, monazite, xenotime, thorian, loparite and yttrio-fluorite). The pollucite is typically associated with spodumene, petalite, amblygonite, quartz and feldspar. The primary pollucite has Si/Al (at) ratios of 2.53-2.65 and CRK of 79.5- 82.2. Thorian loparite is essentially a member of the loparite (NaLREETi2O6)-lueshite (NaNbO3)-ThTi2O6-ThNb4O12 quaternary system with low or negligible contents of other end-member compositions. The mineral compositionally evolved from niobian loparite to niobian thorian and thorian loparite gave rise to ceriobetafite and belyankinite with high ThO2 contents. Thorian loparite is metamict or partly metamict and upon heating regains a structure close to that of synthetic loparite NaLaTi2O6.展开更多
The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegma...The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegmatites intrude metasediments and geochemical analysis for major, trace and rare earth elements were carried out using ICP MS/AES. Petrographic studies reveal a mineral assemblage of quartz, microcline and tourmaline;SEM studies revealed garnet and tourmaline to be close to the spessartine end-member and schorl respectively with albite occurring as the dominant plagioclase feldspar in the pegmatites. Result of geochemical analysis revealed SiO2 with an average of 73.91% in the whole rock pegmatite Al2O3 with an average of 13.93%, and average concentration of 0.57%, 4.3% and 4.77% for CaO, Na2O and K2O respectively. It also revealed average concentration of 29 ppm, 153 ppm, 30 ppm, 118 ppm and 129 ppm for W, Li, Ta, Nb and Sn in the mica respectively which is above the average values in the whole rock, felspars and tourmaline extracts. REE abundance in the whole rock pegmatites is low to moderate with ∑REE varying between 8 - 220 ppm, 2 - 23 ppm in feldspars and 3 - 32 ppm in mica signifying no form of REE enrichment. Geochemical analysis results and trace elemental plots such as K/Rb vs. Rb, Ta vs. Ga, Ta vs. Cs were used to assess rare metal mineralization and it revealed the pegmatites have low level of rare metal and rare earth element mineralization with average k/Rb values of 177 indicative of low fractionation levels in the pegmatites.展开更多
Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we...Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.展开更多
The effect of rare earth on the microstructures, mechanical properties and inclu sions in low sulphur Nb-Ti-bearing steel were investigated. It is shown that t h e transverse yield point, the traverse tensile strength...The effect of rare earth on the microstructures, mechanical properties and inclu sions in low sulphur Nb-Ti-bearing steel were investigated. It is shown that t h e transverse yield point, the traverse tensile strength and elongation of testin g steels decrease initially and then rise with increasing content of rare earth. The impact energy values of the testing steels exhibit a contrary trend. Proper amount of rare earth in the steels can improve the anisotropy of impact toughne ss above -20 ℃ and it does not affect the type of microstructures which ar e st ill composed of ferrites and pearlites, but the pearlite amount increases. On one hand, rare earth cleans the molten steel and reduces the amount of inclusions; on the other hand, rare earth makes the inclusions spheroidizd, refi ned and dispersed, and thus improves the distribution of inclusions.展开更多
This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern ...This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern Ethiopia using published and unpublished works to give a comprehensive understanding about the formation of the mineral deposit. The Kenticha rare metal pegmatite belt comprises several groups of pegmatites which show a high magmatic fractionation, regional and compositional zoning, mineralogical assemblage, and secondary alterations. The internal zonation shows high degree of evolution from the border to the core zone during crystallization and solidification of the leucogranitic to pegmatitic melt. Tantalum mineralization at Kenticha includes zoned tantalite-(Mn) and columbite-(Mn), as well as microlite, pyrochlore, uranmicrolite, and rare tapiolite, ixiolite/wodginite and Ta-bearing rutile. The tectonic setting of the Kenticha granite pegmatite in the Within Plate Granite (WPG) to syn-Collisional Granite (syn-COLG) granite and probably sourced from extreme fractionation of syn-to late tectonic granites or anatexis process of the metasedimentary rocks in the area. The emplacement of the Kenticha pegmatite was at ca. 530 Ma and temporally related to the post-collisional phase of granitic magmatism at 570 - 520 Ma, after the last tectonic stage of east African orogeny during the late stage of Gondwana assembly.展开更多
In the article the features of the formation and metallogeny of the geological structures of Great Altai (Rudny Altai, Kalba-Narym, Western Kalba and Jarma-Saur) which are included into the system of the Central Asian...In the article the features of the formation and metallogeny of the geological structures of Great Altai (Rudny Altai, Kalba-Narym, Western Kalba and Jarma-Saur) which are included into the system of the Central Asian mobile belt are considered. The characteristic of the main types of rare metal minefields of the Kalba-Narymsky belt genetically connected with the Perm granitoid magmatism of the post-conflict orogenny stage of activization is given. The rhythmical and pulsation model of pegmatitovy ore formation in the conditions of the half-closed magmatic system, reflecting the phasic development of mineral complexes from graphic and oligoclase-microcline (barren) to microcline-albite and albite-spodumene ore (Ta, Nb, Be, Li, Sn, etc.) is developed. On the basis of the revealed criteria of ore formation recommendations about the direction of the further researches are made.展开更多
The new preparation method of scandium bearing master alloys, in which scandium oxide was fluorinated by reaction with NH 4HF 2 and then reduced by aluminum magnesium in fused salt containing alkali and alkaline f...The new preparation method of scandium bearing master alloys, in which scandium oxide was fluorinated by reaction with NH 4HF 2 and then reduced by aluminum magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum magnesium was used as the reductive agent, the all recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al 3Sc, so the reduction progress is sustained and the recovery of Sc is increased.展开更多
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid wit...The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite.There are three distinguishable types of fluid inclusions:crystal-rich,CO2–NaCl–H2 O,and NaCl–H2 O.At more than 500°C and 350~480 MPa,crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage,characterized by a dense hydrous alkali borosilicate fluid with a carbonate component.Between 412°C and 278°C,CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I)and quartz(II)with a low salinity(3.3–11.9 wt%NaCl equivalent)and a high volatile content,which represent the boundary between the transition stage and the hydrothermal stage.The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C,have a low salinity(1.1–13.9 wt%NaCl equivalent).The various types of fluid inclusions reveal the P–T conditions of pegmatite formation,which marks the transition process from magmatic to hydrothermal.The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals,such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals.Therefore,this area has favorable conditions for lithium enrichment and excellent prospecting potential.展开更多
文摘The pegmatite province of the Southeastern Desert (SED) is part of a pegmatite district that extends from Egypt (extends to 1200 km2). Rare metal pegmatites are divided into (1) unzoned, Sn-mineralized; (2) zoned Li, Nb, Ta and Be-bearing; and (3) pegmatites and pegmatites containing colored, gem-quality tourmaline. The Rb/Sr data reflect a crustal origin for the rare metal pegmatites and indicate that the original SED magma was generated during the peak of regional metamorphism and predates the intrusion of post-tectonic leucogranites. These bodies developed an early border zone consisting of coarse to very coarse muscovite+quartz+alkali feldspar, followed by an intermediate zone of dominant quartz+feldspar+muscovite rock. Garnet, tourmaline, beryl, galena, pyrite, amblygonite, apatite and monazite are rare accessories in both zones. Cassiterite tends to concentrate in replacement zones and along fractures in albite+quartz+muscovite-rich portions. The highest concentrations of cassiterite occur in irregular greisenized zones which consist dominantly of micaceous aggregates of green Li-rich muscovite, quartz, albite and coarse-grained cassiterite. The different metasomatic post-solidification alterations include sodic and potassic metasomatism, greisenization and tourmalinization. Geochemically, the pegmatite-generating granites have a metaluminous composition, showing a differentiation trend from coarse-grained, unfractionated plagioclase-rich granite towards highly fractionated fine- to medium-grained, local albite-rich rock. Economically important ore minerals introduced by volatile-rich, rare metal-bearing fluids, either primarily or during the breakdown of the primary mineral assemblages, are niobium-tantalum oxides, Sn-oxides (cassiterite), Li-silicates (petalite, spodumene, euctyptite, and pollucite), Li-phosphates (amblygonite, montebrasite and lithopilite) and minor REE-minerals (Hf-zircon, monazite, xenotime, thorian, loparite and yttrio-fluorite). The pollucite is typically associated with spodumene, petalite, amblygonite, quartz and feldspar. The primary pollucite has Si/Al (at) ratios of 2.53-2.65 and CRK of 79.5- 82.2. Thorian loparite is essentially a member of the loparite (NaLREETi2O6)-lueshite (NaNbO3)-ThTi2O6-ThNb4O12 quaternary system with low or negligible contents of other end-member compositions. The mineral compositionally evolved from niobian loparite to niobian thorian and thorian loparite gave rise to ceriobetafite and belyankinite with high ThO2 contents. Thorian loparite is metamict or partly metamict and upon heating regains a structure close to that of synthetic loparite NaLaTi2O6.
文摘The study was carried out to determine the rare metal mineralization potential of some pegmatites associated with metasediments in the Igangan 240 NW sheet. Geological mapping on a scale of 1:50,000 revealed the pegmatites intrude metasediments and geochemical analysis for major, trace and rare earth elements were carried out using ICP MS/AES. Petrographic studies reveal a mineral assemblage of quartz, microcline and tourmaline;SEM studies revealed garnet and tourmaline to be close to the spessartine end-member and schorl respectively with albite occurring as the dominant plagioclase feldspar in the pegmatites. Result of geochemical analysis revealed SiO2 with an average of 73.91% in the whole rock pegmatite Al2O3 with an average of 13.93%, and average concentration of 0.57%, 4.3% and 4.77% for CaO, Na2O and K2O respectively. It also revealed average concentration of 29 ppm, 153 ppm, 30 ppm, 118 ppm and 129 ppm for W, Li, Ta, Nb and Sn in the mica respectively which is above the average values in the whole rock, felspars and tourmaline extracts. REE abundance in the whole rock pegmatites is low to moderate with ∑REE varying between 8 - 220 ppm, 2 - 23 ppm in feldspars and 3 - 32 ppm in mica signifying no form of REE enrichment. Geochemical analysis results and trace elemental plots such as K/Rb vs. Rb, Ta vs. Ga, Ta vs. Cs were used to assess rare metal mineralization and it revealed the pegmatites have low level of rare metal and rare earth element mineralization with average k/Rb values of 177 indicative of low fractionation levels in the pegmatites.
基金supported by grants from the National Natural Science Foundation of China (40702014)the China Postdoctoral Science Foundation (2008044018,200902580)+1 种基金the Chinese SinoProbe Project (SinoProbe-03-01)the National Nonprofit Institute Research Grant of IMR,GAGS(K1001)
文摘Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.
文摘The effect of rare earth on the microstructures, mechanical properties and inclu sions in low sulphur Nb-Ti-bearing steel were investigated. It is shown that t h e transverse yield point, the traverse tensile strength and elongation of testin g steels decrease initially and then rise with increasing content of rare earth. The impact energy values of the testing steels exhibit a contrary trend. Proper amount of rare earth in the steels can improve the anisotropy of impact toughne ss above -20 ℃ and it does not affect the type of microstructures which ar e st ill composed of ferrites and pearlites, but the pearlite amount increases. On one hand, rare earth cleans the molten steel and reduces the amount of inclusions; on the other hand, rare earth makes the inclusions spheroidizd, refi ned and dispersed, and thus improves the distribution of inclusions.
文摘This work reviews the geology, geochemistry and geochronology and discusses the spatial and temporal relationship of the granite pegmatite and the rare metal mineralization of the Kenticha granite pegmatite, southern Ethiopia using published and unpublished works to give a comprehensive understanding about the formation of the mineral deposit. The Kenticha rare metal pegmatite belt comprises several groups of pegmatites which show a high magmatic fractionation, regional and compositional zoning, mineralogical assemblage, and secondary alterations. The internal zonation shows high degree of evolution from the border to the core zone during crystallization and solidification of the leucogranitic to pegmatitic melt. Tantalum mineralization at Kenticha includes zoned tantalite-(Mn) and columbite-(Mn), as well as microlite, pyrochlore, uranmicrolite, and rare tapiolite, ixiolite/wodginite and Ta-bearing rutile. The tectonic setting of the Kenticha granite pegmatite in the Within Plate Granite (WPG) to syn-Collisional Granite (syn-COLG) granite and probably sourced from extreme fractionation of syn-to late tectonic granites or anatexis process of the metasedimentary rocks in the area. The emplacement of the Kenticha pegmatite was at ca. 530 Ma and temporally related to the post-collisional phase of granitic magmatism at 570 - 520 Ma, after the last tectonic stage of east African orogeny during the late stage of Gondwana assembly.
文摘In the article the features of the formation and metallogeny of the geological structures of Great Altai (Rudny Altai, Kalba-Narym, Western Kalba and Jarma-Saur) which are included into the system of the Central Asian mobile belt are considered. The characteristic of the main types of rare metal minefields of the Kalba-Narymsky belt genetically connected with the Perm granitoid magmatism of the post-conflict orogenny stage of activization is given. The rhythmical and pulsation model of pegmatitovy ore formation in the conditions of the half-closed magmatic system, reflecting the phasic development of mineral complexes from graphic and oligoclase-microcline (barren) to microcline-albite and albite-spodumene ore (Ta, Nb, Be, Li, Sn, etc.) is developed. On the basis of the revealed criteria of ore formation recommendations about the direction of the further researches are made.
文摘The new preparation method of scandium bearing master alloys, in which scandium oxide was fluorinated by reaction with NH 4HF 2 and then reduced by aluminum magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum magnesium was used as the reductive agent, the all recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al 3Sc, so the reduction progress is sustained and the recovery of Sc is increased.
基金funded by the National Natural Science Foundation of China(No.41703048,41872096)the Chinese National Nonprofit Institute Research Grant of CAGS,CGS(YYWF201520,JYYWF201814)the China Geological Survey(DD20160055,DD20190173)
文摘The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt.Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite.There are three distinguishable types of fluid inclusions:crystal-rich,CO2–NaCl–H2 O,and NaCl–H2 O.At more than 500°C and 350~480 MPa,crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage,characterized by a dense hydrous alkali borosilicate fluid with a carbonate component.Between 412°C and 278°C,CO2–Na Cl–H2 Ofluid inclusions developed in spodumene(I)and quartz(II)with a low salinity(3.3–11.9 wt%NaCl equivalent)and a high volatile content,which represent the boundary between the transition stage and the hydrothermal stage.The subsequentNaCl–H2 Ofluid inclusions from the hydrothermal stage,between 189°C and 302°C,have a low salinity(1.1–13.9 wt%NaCl equivalent).The various types of fluid inclusions reveal the P–T conditions of pegmatite formation,which marks the transition process from magmatic to hydrothermal.The oreforming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit.The ore-forming fluid provided not only materials for crystallization of rare metal minerals,such as spodumene and beryl,but also the ideal conditions forthe growth of ore minerals.Therefore,this area has favorable conditions for lithium enrichment and excellent prospecting potential.