Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enha...Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enhanced the catalytic activity of CuO-CeO2 for PROX. For example, the CO conversion over the above catalyst for PROX was higher than 99% at 120 °C. Especially, the doping of Pr widened the temperature window by 20 °C over CuO-CeO2 with 99% CO conversion. For Nd, Y, and La, the doping depressed the catalytic activity of CuO-CeO2 for PROX. However, the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.展开更多
Broadband,high bit rate,long hauls and system intelligence are current trends in developing fiber optic communication systems.The ever-increasing traffic demands have made it urgent to develop new band optical fiber a...Broadband,high bit rate,long hauls and system intelligence are current trends in developing fiber optic communication systems.The ever-increasing traffic demands have made it urgent to develop new band optical fiber amplifier.Laser characteristics of various rare-earth ion including Er3+,Tm3+,Pr3+,Dy3+,Ho3+,and Nd3+ doped fiber are reviewed.Recent advances of rare-earth doped fiber amplifiers with wide-band and flat gain are also introduced.展开更多
In this work wavelength sensitivity in mechanically induced long period fiber gratings (MLPFG) is analyzed. This analysis is first carried out both in standard single-mode fiber SMF-28 and in Er-doped fibers. The mech...In this work wavelength sensitivity in mechanically induced long period fiber gratings (MLPFG) is analyzed. This analysis is first carried out both in standard single-mode fiber SMF-28 and in Er-doped fibers. The mechanical analysis for both types of fibers under different torsion conditions is presented. In order to apply the torsion one of the fiber ends is fixed while torsion is applied on the other end. A MLPFG whose period is 503 μm is used to press the fiber after torsion is applied. This allows for micro curvatures to be formed on the fiber, which in turn generates a periodical index perturbation on it. Here, it was noted that the sensitive wavelength shift of the rejection bands is bigger for Er-doped fibers. For a torsion of 6 turns applied to 10 cm of doped fiber the wavelength peaks can be moved up to 25 nm, which is longer to what was detected on standard fibers. Therefore, by using Er-doped fibers to monitor torsion on structures will give more sensitive and accurate results than using standard fibers. These results can be employed for sensing applications, especially for small to medium size structures, which can be mechanical, civil or aeronautics.展开更多
Rare-earth ion doped crystals for hybrid quantum technologies are an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator whic...Rare-earth ion doped crystals for hybrid quantum technologies are an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator which is fabricated out of a rare-earth doped mono-crystalline structure. The rare-earth ion dopants have absorption energies which are sensitive to crystal strain, and it is thus possible to couple the ions to the bending motion of the crystal cantilever. This type of resonator can be useful for either investigating the laws of quantum physics with material objects or for applications such as sensitive force-sensors. Here, we present the design and fabrication method based on focused-ion-beam etching techniques which we have successfully employed in order to create such microscale resonators, as well as the design of the environment which will allow studying the quantum behavior of the resonators.展开更多
Polycrystalline samples of La0.4Cao.6Mn1-xCrxO3 (x = 0.00, 0.02, 0.04, 0.06) were prepared by the solid state reaction method. The influence of Cr3+ substitution for Mn3+ on the magnetic property and charge orderi...Polycrystalline samples of La0.4Cao.6Mn1-xCrxO3 (x = 0.00, 0.02, 0.04, 0.06) were prepared by the solid state reaction method. The influence of Cr3+ substitution for Mn3+ on the magnetic property and charge ordering phase of La0.4Ca0.6MnO3 was studied through the measurements of X-ray diffraction (XRD), magnetization-temperature (M-T) curves and electron spin resonance (ESR) spectra. The experimental results indicate that the mother's body of La0.4Ca0.6MnO3 has very complicated magnetic structure, exhibits charge ordering phase at 258 K, and shows long-range strongly correlated charge ordering-antiferromagnetism (CO-AFM) phase from 175 to 50 K. Spin glass state appears when the temperature decreases to about 41 K. When the Cr substitution amount is x = 0.06, the charge ordering phase of the mother's body is de-stroyed, because the Cr3+ substitution for Mn3+ destroys the spin order of CE-type antiferromagnetism, and thus leads to the melting of charge ordering. It is verified experimentally that the strong coupling between charge order and spin order exists in the charge order system of CE-type antiferromagnetism.展开更多
The double-doped La2/3+4x/3Sr1/3-4x/3Mn1-xMgxO3 samples with fixed Mn^3+/Mn^4+ ratio equal to 2/1 are investigated by means of magnetism and transport measurements. Phase separation is observed at temperature highe...The double-doped La2/3+4x/3Sr1/3-4x/3Mn1-xMgxO3 samples with fixed Mn^3+/Mn^4+ ratio equal to 2/1 are investigated by means of magnetism and transport measurements. Phase separation is observed at temperature higher than T^onset c for x = 0.10 and 0.15. For x = 0.10, rather strong phase separation induces drastic magnetic random potential and results in the localization of carriers. Thus, the varlable-range hopping process dominates. For other samples, there is no or only weak phase separation above T^onset c. Thus, thermal activation mechanism is responsible for the high temperature transport behaviour. For x = 0.20 and 0.25, unexpected AFM behaviour is observed at low temperature. All these results are well understood by considering the special role of the "double-doping".展开更多
Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aque...Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.展开更多
A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striki...A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.展开更多
A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters ...A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1.展开更多
基金the National Basic Research Program of China (973 program, No. 2004 CB 7195040)
文摘Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enhanced the catalytic activity of CuO-CeO2 for PROX. For example, the CO conversion over the above catalyst for PROX was higher than 99% at 120 °C. Especially, the doping of Pr widened the temperature window by 20 °C over CuO-CeO2 with 99% CO conversion. For Nd, Y, and La, the doping depressed the catalytic activity of CuO-CeO2 for PROX. However, the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.
基金NaturalScienceFoundationofShandongProvince China (Y2 0 0 3G0 1)
文摘Broadband,high bit rate,long hauls and system intelligence are current trends in developing fiber optic communication systems.The ever-increasing traffic demands have made it urgent to develop new band optical fiber amplifier.Laser characteristics of various rare-earth ion including Er3+,Tm3+,Pr3+,Dy3+,Ho3+,and Nd3+ doped fiber are reviewed.Recent advances of rare-earth doped fiber amplifiers with wide-band and flat gain are also introduced.
文摘In this work wavelength sensitivity in mechanically induced long period fiber gratings (MLPFG) is analyzed. This analysis is first carried out both in standard single-mode fiber SMF-28 and in Er-doped fibers. The mechanical analysis for both types of fibers under different torsion conditions is presented. In order to apply the torsion one of the fiber ends is fixed while torsion is applied on the other end. A MLPFG whose period is 503 μm is used to press the fiber after torsion is applied. This allows for micro curvatures to be formed on the fiber, which in turn generates a periodical index perturbation on it. Here, it was noted that the sensitive wavelength shift of the rejection bands is bigger for Er-doped fibers. For a torsion of 6 turns applied to 10 cm of doped fiber the wavelength peaks can be moved up to 25 nm, which is longer to what was detected on standard fibers. Therefore, by using Er-doped fibers to monitor torsion on structures will give more sensitive and accurate results than using standard fibers. These results can be employed for sensing applications, especially for small to medium size structures, which can be mechanical, civil or aeronautics.
基金YLC acknowledges support from the Ville de Paris Emergence Program and from the LABEX Cluster of Excellence FIRST-TF(ANR-10-LABX-48-01),within the Program“investissements d'Avenir”operated by the French National Research Agency(ANR)The project has also received funding from the European Union’Horizon 2020 research and innovation program under grant agreement No 712721(NanOQTech).
文摘Rare-earth ion doped crystals for hybrid quantum technologies are an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator which is fabricated out of a rare-earth doped mono-crystalline structure. The rare-earth ion dopants have absorption energies which are sensitive to crystal strain, and it is thus possible to couple the ions to the bending motion of the crystal cantilever. This type of resonator can be useful for either investigating the laws of quantum physics with material objects or for applications such as sensitive force-sensors. Here, we present the design and fabrication method based on focused-ion-beam etching techniques which we have successfully employed in order to create such microscale resonators, as well as the design of the environment which will allow studying the quantum behavior of the resonators.
基金supported by the Key Program of the National Natural Science Foundation of China (No.19934003)the Key Program of Natural Science Research of Anhui Education Department (No.KJ2011A259+3 种基金 KJ2008A34ZC)the Natural Science Research Programs of Anhui Education Department, China (No.KJ2010B229No.KJ2010B228No.KJ2009B281Z)
文摘Polycrystalline samples of La0.4Cao.6Mn1-xCrxO3 (x = 0.00, 0.02, 0.04, 0.06) were prepared by the solid state reaction method. The influence of Cr3+ substitution for Mn3+ on the magnetic property and charge ordering phase of La0.4Ca0.6MnO3 was studied through the measurements of X-ray diffraction (XRD), magnetization-temperature (M-T) curves and electron spin resonance (ESR) spectra. The experimental results indicate that the mother's body of La0.4Ca0.6MnO3 has very complicated magnetic structure, exhibits charge ordering phase at 258 K, and shows long-range strongly correlated charge ordering-antiferromagnetism (CO-AFM) phase from 175 to 50 K. Spin glass state appears when the temperature decreases to about 41 K. When the Cr substitution amount is x = 0.06, the charge ordering phase of the mother's body is de-stroyed, because the Cr3+ substitution for Mn3+ destroys the spin order of CE-type antiferromagnetism, and thus leads to the melting of charge ordering. It is verified experimentally that the strong coupling between charge order and spin order exists in the charge order system of CE-type antiferromagnetism.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10504029 and 10334090), and the State Key Project of Fundamental Research, China (Grant No 001CB610604).
文摘The double-doped La2/3+4x/3Sr1/3-4x/3Mn1-xMgxO3 samples with fixed Mn^3+/Mn^4+ ratio equal to 2/1 are investigated by means of magnetism and transport measurements. Phase separation is observed at temperature higher than T^onset c for x = 0.10 and 0.15. For x = 0.10, rather strong phase separation induces drastic magnetic random potential and results in the localization of carriers. Thus, the varlable-range hopping process dominates. For other samples, there is no or only weak phase separation above T^onset c. Thus, thermal activation mechanism is responsible for the high temperature transport behaviour. For x = 0.20 and 0.25, unexpected AFM behaviour is observed at low temperature. All these results are well understood by considering the special role of the "double-doping".
基金[This work was financially supported by the Science and Technology Department Foundation of Hunan Province (No. 02JJY2015), and the Doctorate Foundation of Changsha University of Science and Technology (No. 04xxrc037).]
文摘Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.
基金supported by Shanghai Rising-Star Program (No. 11QH1401000)the National Natural Science Foundation of China (No. 50932003)+1 种基金the Key Project of Chinese Ministry of Education (No. 211055)Shanghai Research Special Fund for Outstanding Young Teachers (No. sdl10009)
文摘A systematic study on the structural, magnetic, and electrical transport properties was performed for the LaMnlxCUxO3 system. A single phase of orthorhornbic perovskite structure was formed for x = 0.05-0.40. A striking paramagnetic-ferromagnetic transition and a considerable magnetoresistance effect were observed at the ferromagnetic ordering temperature Tc, but no insulator-metal transition induced by Cu-doping was observed. Below Tc, a visible unexpected drop was observed in the ac susceptibility and zero-field-cooled dc magnetization for the dilute doped samples with x≤0.10, which was proven to be associated with domain wall pinning effects by milling the bulk material into single domain particles. It is validated that there is no exchange interaction between Cu and Mn, and double exchange interactions between Mn^3+ and Mn^4+ are induced by Cu-doping in the anti-ferromagnetic LaMnO3 matrix, whereas the severe distortion and disorder caused by occupied-dopant prohibits charge carriers from hopping.
文摘A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1.