Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ...This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.展开更多
A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling t...A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.展开更多
Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural co...Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.展开更多
A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor ha...A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.展开更多
The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite gra...The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite grains,as well as the influence of the ferrite grain size on the main technical indicators of gas carburizing.The results show that coarse ferrite grains may not necessarily cause the coarse austenite grains,but may result in mixed austenite grains.After annealing treatment,the coarse ferrite grains can be significantly refined and homogenized.Moreover,the coarse ferrite grains have no significant effects on hardnessand intergranular oxidationof gas carburizing.展开更多
Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-domina...Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.展开更多
A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the...A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.展开更多
Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity v...Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres.As a result,at a low temperature(T<10 K),the parameter Bfswdecreases with increasing Zn concentration,implying that the exchange interaction between A and B sites decreases.At a relatively high temperature(T>50 K),the Debye temperature decreases with increasing Zn concentration,which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the Co Fe_(2)O_(4)spinel ferrite.展开更多
In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation met...In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,an...Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,and 0.20)materials are successfully prepared by using solid-state method at 925℃for 4 h with 2.5-wt%Bi_(2)O_(3)sintering aids.The content of Gd^(3+)ion can affect micromorphology,grain size,bulk density,and magneto-dielectric properties of the ferrite.With Gd^(3+)ion content increasing,saturation magnetization(Ms)first increases and then decreases.The maximum value of Ms is 44.86 emu/g at x=0.15.Additionally,sites occupied by Gd^(3+)ions can change magnetic anisotropy constant of the ferrite.Magnetocrystalline anisotropy constant(K_1)is derived from initial magnetization curve,and found to be related to spin-orbit coupling and intersublattice interactions between metal ions.The real part of magnetic permeability(μ′)and real part of dielectric permittivity(ε′)are measured in a frequency range of 10 MHz-1 GHz.When x=0.15,material has excellent magneto-dielectric properties(μ′≈12.2 andε′≈17.61),low magnetic loss(tanδμ≈0.03 at 500 MHz),and dielectric loss(tanδε≈0.04 at 500 MHz).The results show that Gd-doped Co_(2)Z ferrite has broad application prospects in multilayer filters and high-frequency antennas.展开更多
Nano-sized powders of rare-earth ions added CdFe2O4 ferrites were synthesized by oxalate co-precipitation method.The influence of R ions(R = Sm3+, Y3+, and La3+) on the microstructure and magnetic properties of C...Nano-sized powders of rare-earth ions added CdFe2O4 ferrites were synthesized by oxalate co-precipitation method.The influence of R ions(R = Sm3+, Y3+, and La3+) on the microstructure and magnetic properties of CdFe2O4 ferrites was studied.XRD, SEM, FTIR, and magnetic hysteresis loops were used for analyzing the samples.The addition of R ions alters the structure of the powders and decreases the crystalline size, lattice constant, and grain size.The magnetic properties such as saturation magnetization, remanent magnetization, and magnetic moment increased due to addition of rare-earth ions in CdFe2O4 ferrite.The formation of secondary phase on the grain boundaries supports the abnormal growth.FTIR spectra show two absorption bands.Results suggest that the magnetic properties depend on the particular method of preparation and additives.展开更多
To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by addin...Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate...Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.展开更多
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
文摘This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.
文摘A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.
基金supported by National Natural Science Foundation of China Project (Grant No. 52374133, 52262034)the Guangdong Basic and Applied Basic Research Committee Foundation (Grant No. KCXST20221021111601003)Shenzhen Science and Technology Innovation Commission Foundation (Grant No. KCXST20221021111601003)
文摘Nanoparticles anchored on the perovskite surface have gained considerable attention for their wide-ranging applications in heterogeneous catalysis and energy conversion due to their robust and integrated structural configuration.Herein,we employ controlled Co doping to effectively enhance the nanoparticle exsolution process in layered perovskite ferrites materials.CoFe alloy nanoparticles with ultra-high-density are exsolved on the(PrBa)_(0.95)(Fe_(0.8)Co_(0.1)Nb_(0.1))2O_(5+δ)(PBFCN_(0.1))surface under reducing atmosphere,providing significant amounts of reaction sites and good durability for hydrocarbon catalysis.Under a reducing atmosphere,cobalt facilitates the reduction of iron cations within PBFCN_(0.1),leading to the formation of CoFe alloy nanoparticles.This formation is accompanied by a cation exchange process,wherein,with the increase in temperature,partial cobalt ions are substituted by iron.Meanwhile,Co doping significantly enhance the electrical conductivity due to the stronger covalency of the Cosingle bondO bond compared with Fesingle bondO bond.A single cell with the configuration of PBFCN_(0.1)-Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)|SDC|Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3−δ)(BSCF)-SDC achieves an extremely low polarization resistance of 0.0163Ωcm^(2)and a high peak power density of 740 mW cm^(−2)at 800℃.The cell also shows stable operation for 120 h in H_(2)with a constant current density of 285 mA cm^(−2).Furthermore,employing wet C_(2)H_(6)as fuel,the cell demonstrates remarkable performance,achieving peak power densities of 455 mW cm^(−2)at 800℃and 320 mW cm^(−2)at 750℃,marking improvements of 36%and 70%over the cell with(PrBa)_(0.95)(Fe_(0.9)Nb_(0.1))_(2)O_(5+δ)(PBFN)-SDC at these respective temperatures.This discovery emphasizes how temperature influences alloy nanoparticles exsolution within doped layered perovskite ferrites materials,paving the way for the development of high-performance ceramic fuel cell anodes.
基金supported by Shandong Provincial Natural Science Foundation under Grant ZR2020ME205.
文摘A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.
基金the Shaanxi Innovation Talent Promotion Plan-Youth Science and Technology New Star Project(Talent).Project No.:2023KJXX-121。
文摘The changes in austenite grain size of the specimens with coarse ferrite grains under different heat treatment process were investigated.The focus was on studying the effect of annealing on refining coarse ferrite grains,as well as the influence of the ferrite grain size on the main technical indicators of gas carburizing.The results show that coarse ferrite grains may not necessarily cause the coarse austenite grains,but may result in mixed austenite grains.After annealing treatment,the coarse ferrite grains can be significantly refined and homogenized.Moreover,the coarse ferrite grains have no significant effects on hardnessand intergranular oxidationof gas carburizing.
基金supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK8330)the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (2020M3H4A3081843)。
文摘Although there is a high demand for absorption-dominant electromagnetic interference(EMI) shielding materials for 5G millimeter-wave(mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFB3504800 and 2021YFB3502400)the Key Research and Development Plan of Anhui Province,China(Grant No.202003c08020012)the Key Program of Education Department of Anhui Province,China(Grant No.KJ2019ZD03)。
文摘A big enough transverse magnetic field applied to soft magnetic ferrite toroid can magnetize the ferrite to a saturation level in transverse direction and almost completely suppresses magnetic domain structures in the ferrite,the response to the longitudinal alternating electromagnetic field changes from the original domain wall displacements and spin rotations to the precession of magnetization around the transverse field,and the hysteresis loss disappears in the ferrites.Both theoretical and experimental results indicate that the permeability and magnetic loss in the ferrite can be controlled by adjusting the transverse magnetic field.A higher Q value with relatively low permeability can be achieved by increasing the transverse field,which ensures that the ferrite can be operated at high frequencies,with magnetic loss being very low.
基金Basic Research Project of Liaoning Provincial Department of Education(No.LJKMZ20220829)Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology)(No.211006-K)。
文摘Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres.As a result,at a low temperature(T<10 K),the parameter Bfswdecreases with increasing Zn concentration,implying that the exchange interaction between A and B sites decreases.At a relatively high temperature(T>50 K),the Debye temperature decreases with increasing Zn concentration,which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the Co Fe_(2)O_(4)spinel ferrite.
基金Ho Chi Minh City University of Technology (HCMUT),VNU-HCM for supporting this study。
文摘In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金the National Key Research and Development Program of China(Grant No.2022YFB3504800)the National Natural Science Foundation of China(Grant Nos.61901142,52003256,and 51902037)the Natural Science Foundation of Shanxi Province,China(Grant No.201901D211259)。
文摘Magneto-dielectric properties of Co_(2)Z ferrite materials are tuned via Gd doping for applications in high-frequency antennas and filters in the present work.Ba_(3)Co_(2)Fe_(24-x)Gd_(x)O_(41)(x=0.00,0.05,0.10,0.15,and 0.20)materials are successfully prepared by using solid-state method at 925℃for 4 h with 2.5-wt%Bi_(2)O_(3)sintering aids.The content of Gd^(3+)ion can affect micromorphology,grain size,bulk density,and magneto-dielectric properties of the ferrite.With Gd^(3+)ion content increasing,saturation magnetization(Ms)first increases and then decreases.The maximum value of Ms is 44.86 emu/g at x=0.15.Additionally,sites occupied by Gd^(3+)ions can change magnetic anisotropy constant of the ferrite.Magnetocrystalline anisotropy constant(K_1)is derived from initial magnetization curve,and found to be related to spin-orbit coupling and intersublattice interactions between metal ions.The real part of magnetic permeability(μ′)and real part of dielectric permittivity(ε′)are measured in a frequency range of 10 MHz-1 GHz.When x=0.15,material has excellent magneto-dielectric properties(μ′≈12.2 andε′≈17.61),low magnetic loss(tanδμ≈0.03 at 500 MHz),and dielectric loss(tanδε≈0.04 at 500 MHz).The results show that Gd-doped Co_(2)Z ferrite has broad application prospects in multilayer filters and high-frequency antennas.
基金the University Grant Commission New Delhi for financial assistance through the Minor Research Project (No. 47-016/06)
文摘Nano-sized powders of rare-earth ions added CdFe2O4 ferrites were synthesized by oxalate co-precipitation method.The influence of R ions(R = Sm3+, Y3+, and La3+) on the microstructure and magnetic properties of CdFe2O4 ferrites was studied.XRD, SEM, FTIR, and magnetic hysteresis loops were used for analyzing the samples.The addition of R ions alters the structure of the powders and decreases the crystalline size, lattice constant, and grain size.The magnetic properties such as saturation magnetization, remanent magnetization, and magnetic moment increased due to addition of rare-earth ions in CdFe2O4 ferrite.The formation of secondary phase on the grain boundaries supports the abnormal growth.FTIR spectra show two absorption bands.Results suggest that the magnetic properties depend on the particular method of preparation and additives.
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
文摘Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProjects(51564030,51474117,51304093,51364022)supported by the National Natural Science Foundation of China+1 种基金Project(0120150070)supported by Yunnan Applied Basic Reach Project,ChinaProject(ZD2014003)supported by the Education Department of Yunnan Province,China
文摘Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.