This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective ...Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.展开更多
The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were in...The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.展开更多
The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stre...The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stress rupture life at 750℃ and 645MPa is longer than 50h. The results showed that the intermediate temperature stress rupture properties impaired by treatment of 1210℃/4h were due to precipitation of too small γ′ phase(<0.2μm) in grains and absence of the secondary carbides at grain boundaries. Microstructure containing the intergranular M6C carbides with envelope of γ′ and the residual coarse γ′ was obtained by means of 1180℃/4h treatment, therefore the stress rupture life was obviously increased to meet the demand of HB5155. The effect of γ′ size was also discussed from the view point of deformation mechanism in this paper.展开更多
A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The m...A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.展开更多
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especial...During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.展开更多
Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their...Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.展开更多
The corrosion resistance of three Mg alloys containing rare-earth elements(WE43,EV31 and ZE41)was studied and compared to that of two Mg-Al alloys(AZ31 and AZ91)and of pure Mg(99.95 wt.%).Current-voltage curves and el...The corrosion resistance of three Mg alloys containing rare-earth elements(WE43,EV31 and ZE41)was studied and compared to that of two Mg-Al alloys(AZ31 and AZ91)and of pure Mg(99.95 wt.%).Current-voltage curves and electrochemical impedance measurements were performed with rotating disk electrodes in an aerated 0.1 M Na_(2)SO_(4)solution.For all the alloys,it was confirmed that the intermetallic particles acted as local cathodes and that more protective films were formed on the alloys surface by comparison with the pure Mg.Corrosion rates were determined from inductive coupled plasma-optical emission spectroscopy measurements and from the electrochemical measurements.Higher corrosion rates were observed for the rare-earth Mg alloys compared to the AZ series alloys.These data allowed the corrosion mechanisms to be discussed.展开更多
To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently f...To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions.展开更多
Besides W-phase and Ni-phase, there is a micro new phase in W-Mo-Ni-Fe heavy alloy added with La and Mn. The micro phase can he extracted as an electrolytic residue by the following method: A mixture of the new phase ...Besides W-phase and Ni-phase, there is a micro new phase in W-Mo-Ni-Fe heavy alloy added with La and Mn. The micro phase can he extracted as an electrolytic residue by the following method: A mixture of the new phase and the Ni-phase is isolated when an alloy sample is electrolyzed in 5%NaOH+1% tartaric acid solution. And the new phase can be isolated alone when the mixture is electrolyzed in 10% acetylacetone +1%LiCl methanol solution. The result of the quantitative phase analysis indicates that the new phase is a complex oxide rich in La, W and Mn.The interfacial segregation of oxygen decreases and the binding force between W-Ni Phases increases because of the existence of the oxide. So the mechanical properties of the alloy are improved.展开更多
For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials...For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.展开更多
The microstructure of WE93 alloy in different states and the mechanical properties at room temperature were investigated, and the creep behavior of the extruded and aged alloy at 200 ℃and at stress of 100, 125 and 15...The microstructure of WE93 alloy in different states and the mechanical properties at room temperature were investigated, and the creep behavior of the extruded and aged alloy at 200 ℃and at stress of 100, 125 and 150 MPa was also discussed. The result shows that the microstructure of as-cast WE93 alloy consists of α-Mg, Mg 12 (MM) and Mg 24 Y 5 with an average grain size of 45 μm. After being homogenized at 535 ℃for 18 h, the Mg 24 Y 5 phase is dissolved completely and there is only Mg 12 (MM) phase left around the grain boundaries. The grains do not grow up as prolonging the homogenization time. The extruded alloy has better mechanical properties than the as-cast alloy, especially the elongation increases to 12.5%. The extruded and aged alloy exhibits the highest yield strength and ultimate tensile strength of 315 and 385 MPa, respectively, however, the elongation decreases to 6.5%. The extruded and aged alloy exhibits good creep resistance at 200 ℃and at stress of 100 150 MPa. The creep stress exponent n is 2.97, suggesting that grain boundary sliding plays a dominant role at the corresponding temperature and applied stresses.展开更多
The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformati...The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.展开更多
The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron...The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.展开更多
Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,...Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.展开更多
To improve the strength, hardness and heat resistance of Mg-6Al-lZn (AZ61) alloy, the effects of Pr addition on the as-cast microstructure and mechanical properties of AZ61 alloy were investigated at room and elevat...To improve the strength, hardness and heat resistance of Mg-6Al-lZn (AZ61) alloy, the effects of Pr addition on the as-cast microstructure and mechanical properties of AZ61 alloy were investigated at room and elevated temperatures by means of Brinell hardness measurement, optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD) and DNS100 electronic universal testing machine. The results show that the microstructures of Pr-containing AZ61 alloys were refined, with primary,β-MglTAI12 phase distributed homogeneously. When the addition of Pr is up to 1.2wt.%, theβ phase becomes finer, and new needle-like or short-rod shaped AI11Pr3 phase and blocky AIPr phase appear. As a result, optimal tensile properties are obtained. However, greater than 1.2wt.% Pr addition leads to poorer mechanical properties due to the aggregation of the needle-like phase and large size of grains. The present research findings provide a new way for strengthening of magnesium alloys at room and elevated temperatures, and a method of producing thermally-stable AZ61 magnesium alloy.展开更多
Under 20~350 ℃ thermal cycling tensile condition,the as-cast Zn-5Al-RE alloy can realize transformation superplasticity. Rare-earths added into the alloy can make the strain rate and rupture elongation decrease,whil...Under 20~350 ℃ thermal cycling tensile condition,the as-cast Zn-5Al-RE alloy can realize transformation superplasticity. Rare-earths added into the alloy can make the strain rate and rupture elongation decrease,while the annealing treatment has an opposite effect. The longer the annealing time,the larger the strain rate and rupture elongation will be. The effect of rare earths on the thermal-cycling transformation superplasticity of Zn-5Al-RE alloy as-cast is two-faced: on the one side,rare earths can make the eutectic structure of Zn-5Al-RE alloy fine and thus benefits superplastic deformation. On the other side,rare earths make the diffusion velocity of Zn and Al decrease and postpone the diffusion coordination process,which will hinder the viscous flow of the interphase boundaries,enhance superplastic deformation stress,and make the strain rate and elongation decrease.展开更多
The influence of rare-earth elements,La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er and Yb on the thermal stability of PdSi_(16.5) glass was studied systematically by means of DSC.All rare-earth elements,especially heavy ones,increase...The influence of rare-earth elements,La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er and Yb on the thermal stability of PdSi_(16.5) glass was studied systematically by means of DSC.All rare-earth elements,especially heavy ones,increase obviously the thermal stability parameters,including T_θ(T_g ,T_x ,T_g),T_(rg) and ΔE etc.The crystallization temperatures T_(p1) and T_(p2) increase linearly with the lanthanide constriction increasing,but Eu shows an anomalous influence:Pd-Si-Eu metallic glass possesses the highest thermal stability and the lowest concentration limit of glass forming among Pd-Si-R glasses.展开更多
Effects of rare-earth(RE)and precipitates on twin evolution in cast Mg-10Gd-3Y-0.5Zr(wt.%)(GW103)alloys of solid solution(T4)and aged(T6)states are investigated performing quasi-static room temperature compression tes...Effects of rare-earth(RE)and precipitates on twin evolution in cast Mg-10Gd-3Y-0.5Zr(wt.%)(GW103)alloys of solid solution(T4)and aged(T6)states are investigated performing quasi-static room temperature compression tests and microstructural characterization.It is found that both{10–12}and{11–21}extension twins(ET1 and ET2)can appear in the T4 and T6 states but with different emergence sequences.As the aging heat treatment leads to consumption of RE solutes which could inhibit atomic shuffling required for nucleation of ET1 but not ET2,ET2 occurs prior to ET1 in the T4 state,and ET1 emerges before ET2 in the T6 state.The extension twins here mainly coordinate the plastic deformation through the non-Schmid effect.Our results shed light on the influence of RE elements on twin evolution in magnesium alloys and have implications in developing high-performance Mg-RE alloys.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金financially supported by the National Natural Science Foundation of China (Nos. 51564015 and 51674126)the Graduate Student Innovation Special Fund of Jiangxi Province (YC2015-B064)+2 种基金the Science and Technology Research Project of Jiangxi Department of Education (GJJ150664)the Outstanding Doctoral Dissertation Project Fund of JXUST (YB2016007)the Scientific Research Fund of JXUST (NSFJ2014-G09)
文摘Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.
基金the National Key Technology R&D Program for the 11th Five-Year Plan(2006BAE04B01 ,2006BAE04B04) the National Basic Research Program ("973") of China (2007CB613705)
文摘The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.
文摘The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stress rupture life at 750℃ and 645MPa is longer than 50h. The results showed that the intermediate temperature stress rupture properties impaired by treatment of 1210℃/4h were due to precipitation of too small γ′ phase(<0.2μm) in grains and absence of the secondary carbides at grain boundaries. Microstructure containing the intergranular M6C carbides with envelope of γ′ and the residual coarse γ′ was obtained by means of 1180℃/4h treatment, therefore the stress rupture life was obviously increased to meet the demand of HB5155. The effect of γ′ size was also discussed from the view point of deformation mechanism in this paper.
基金supported by the National Natural Science Foundation
文摘A TTT diagram for th ie precipitation formed at some intermediate temperatures through cooling from high lemperalure parenl phase in a Cu-27 27Zn-3.73Al allay is established by means of dilatormetric measurement.The morphology and structure of transformation products formed at some intermediate tem peratures isothermally through cooling from high temperature parent phase and up-quenching from DO_(3) parent phase are studied by metallographic.X-ray and electron microscopy analyses.Three regions in the two separate C curves are obtained according to different morphology of precipitate:rod-like a,plate-like bainite and a rods,and bainite plates.Prolonged aging makes bainite plate change gradually into a whose lattice parameters are no different from that of a formed equilibriumly from parent phase.The structure is almost orthorhombic long period structure for bainites formed from B_(2) and DO_(3) parent phase,but monoclinic for martensite from DO_(3).They correspond to the overlapping and separating of(1210)and(2010)diffraction peaks respectively,showing the lower degree of ordering in bainite.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.51775334,51821001 and 51701124)National Key Research and Development Program of China(Grant No.2016YFB0701205)+3 种基金China Postdoctoral Science Foundation(Grant No.2020M671360)Natural Science Foundation for Young of Jiangsu Province(Grant No.BK20190863)Jiangsu“Mass Innovation and Entrepreneurship”Talent Program(Shuang Chuang Ph.Ds,2018)Open Research Fund of the State Key Laboratory of Metal Matrix Composites(Grant No.sklmmc-kf18-08).
文摘During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.
基金the support of the National Natural Science Foundation of China(Nos.51775337,51675331,51975365)Major Projects of the Ministry of Education(No.311017)+5 种基金the Program of Introducing Talents of Discipline to Universities(Grant No.B06012)sponsored by the Shanghai Pujiang Program(18PJ1405000)the University of Sydney-Shanghai Jiao Tong University Partnership Collaboration Awardssupported by the Natural Sciences and Engineering Research Council of Canada(Nos.RGPIN-201606464)partly supported by the Materials Genome Initiative Center,Shanghai Jiao Tong UniversityThe University of Michigan and Shanghai Jiao Tong University(UM-SJTU)joint research project(AE604401)。
文摘Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.
基金The authors gratefully acknowledge the IRT Saint-Exupery Surfinnov project partners,especially Mapaero and Prodem companies,for the financial support.
文摘The corrosion resistance of three Mg alloys containing rare-earth elements(WE43,EV31 and ZE41)was studied and compared to that of two Mg-Al alloys(AZ31 and AZ91)and of pure Mg(99.95 wt.%).Current-voltage curves and electrochemical impedance measurements were performed with rotating disk electrodes in an aerated 0.1 M Na_(2)SO_(4)solution.For all the alloys,it was confirmed that the intermetallic particles acted as local cathodes and that more protective films were formed on the alloys surface by comparison with the pure Mg.Corrosion rates were determined from inductive coupled plasma-optical emission spectroscopy measurements and from the electrochemical measurements.Higher corrosion rates were observed for the rare-earth Mg alloys compared to the AZ series alloys.These data allowed the corrosion mechanisms to be discussed.
基金supported by the National Natural Science Foundation of China(No.51975365)the Shanghai Pujiang Program(18PJ1405000)+1 种基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Province of Ontario
文摘To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions.
文摘Besides W-phase and Ni-phase, there is a micro new phase in W-Mo-Ni-Fe heavy alloy added with La and Mn. The micro phase can he extracted as an electrolytic residue by the following method: A mixture of the new phase and the Ni-phase is isolated when an alloy sample is electrolyzed in 5%NaOH+1% tartaric acid solution. And the new phase can be isolated alone when the mixture is electrolyzed in 10% acetylacetone +1%LiCl methanol solution. The result of the quantitative phase analysis indicates that the new phase is a complex oxide rich in La, W and Mn.The interfacial segregation of oxygen decreases and the binding force between W-Ni Phases increases because of the existence of the oxide. So the mechanical properties of the alloy are improved.
文摘For the purpose of improving the defects of the conventional friction welding method, the new friction welding technology has been examined. That is, the aim of the study is producing the joint of dissimilar materials evaluated to be difficult for friction welding and non-round shape joints. In this process, after the intermediate material generates the independent friction heat on every side of the specimens, it is removed instantaneously and upset process begins to weld the specimens for a joint. In this study, similar joint of A2017 aluminum alloy and one of S45C steel were examined. On the other hand, thermal elastic-plastic stress analysis by the finite element method was carried out using ANSYS mechanical.
基金Projects(2007CB613704,2007CB613705)supported by the National Basic Research Program of China
文摘The microstructure of WE93 alloy in different states and the mechanical properties at room temperature were investigated, and the creep behavior of the extruded and aged alloy at 200 ℃and at stress of 100, 125 and 150 MPa was also discussed. The result shows that the microstructure of as-cast WE93 alloy consists of α-Mg, Mg 12 (MM) and Mg 24 Y 5 with an average grain size of 45 μm. After being homogenized at 535 ℃for 18 h, the Mg 24 Y 5 phase is dissolved completely and there is only Mg 12 (MM) phase left around the grain boundaries. The grains do not grow up as prolonging the homogenization time. The extruded alloy has better mechanical properties than the as-cast alloy, especially the elongation increases to 12.5%. The extruded and aged alloy exhibits the highest yield strength and ultimate tensile strength of 315 and 385 MPa, respectively, however, the elongation decreases to 6.5%. The extruded and aged alloy exhibits good creep resistance at 200 ℃and at stress of 100 150 MPa. The creep stress exponent n is 2.97, suggesting that grain boundary sliding plays a dominant role at the corresponding temperature and applied stresses.
基金Projects(2007CB613704,2007CB613705)supported by the National Basic Research Program of China
文摘The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.
基金financially supported by the National Natural Science Foundation of China(Nos.51801009,52071005)the Youth Talent Support Program of Beihang University,China(No.YWF-21-BJ-J-1143)Shuangyiliu Fund of Beihang University,China(No.030810)。
文摘Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.
基金supported by the National Natural Science Foundation of China(No.50571073)the Natural Science Foundation of Shanxi Province(No.2009011028-3,20051052)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20111402110004)
文摘To improve the strength, hardness and heat resistance of Mg-6Al-lZn (AZ61) alloy, the effects of Pr addition on the as-cast microstructure and mechanical properties of AZ61 alloy were investigated at room and elevated temperatures by means of Brinell hardness measurement, optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD) and DNS100 electronic universal testing machine. The results show that the microstructures of Pr-containing AZ61 alloys were refined, with primary,β-MglTAI12 phase distributed homogeneously. When the addition of Pr is up to 1.2wt.%, theβ phase becomes finer, and new needle-like or short-rod shaped AI11Pr3 phase and blocky AIPr phase appear. As a result, optimal tensile properties are obtained. However, greater than 1.2wt.% Pr addition leads to poorer mechanical properties due to the aggregation of the needle-like phase and large size of grains. The present research findings provide a new way for strengthening of magnesium alloys at room and elevated temperatures, and a method of producing thermally-stable AZ61 magnesium alloy.
文摘Under 20~350 ℃ thermal cycling tensile condition,the as-cast Zn-5Al-RE alloy can realize transformation superplasticity. Rare-earths added into the alloy can make the strain rate and rupture elongation decrease,while the annealing treatment has an opposite effect. The longer the annealing time,the larger the strain rate and rupture elongation will be. The effect of rare earths on the thermal-cycling transformation superplasticity of Zn-5Al-RE alloy as-cast is two-faced: on the one side,rare earths can make the eutectic structure of Zn-5Al-RE alloy fine and thus benefits superplastic deformation. On the other side,rare earths make the diffusion velocity of Zn and Al decrease and postpone the diffusion coordination process,which will hinder the viscous flow of the interphase boundaries,enhance superplastic deformation stress,and make the strain rate and elongation decrease.
文摘The influence of rare-earth elements,La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er and Yb on the thermal stability of PdSi_(16.5) glass was studied systematically by means of DSC.All rare-earth elements,especially heavy ones,increase obviously the thermal stability parameters,including T_θ(T_g ,T_x ,T_g),T_(rg) and ΔE etc.The crystallization temperatures T_(p1) and T_(p2) increase linearly with the lanthanide constriction increasing,but Eu shows an anomalous influence:Pd-Si-Eu metallic glass possesses the highest thermal stability and the lowest concentration limit of glass forming among Pd-Si-R glasses.
基金supported by the National Natural Science Foundation of China(grants U1830121,51301173,51531002,51601193,52171055)the National Science and Technology Major Project(2017-VI-0003-0073)+1 种基金the National Key Research and Development Program of China(2016YFB0301104)China Postdoctoral Science Foundation(grant 8206300226).
文摘Effects of rare-earth(RE)and precipitates on twin evolution in cast Mg-10Gd-3Y-0.5Zr(wt.%)(GW103)alloys of solid solution(T4)and aged(T6)states are investigated performing quasi-static room temperature compression tests and microstructural characterization.It is found that both{10–12}and{11–21}extension twins(ET1 and ET2)can appear in the T4 and T6 states but with different emergence sequences.As the aging heat treatment leads to consumption of RE solutes which could inhibit atomic shuffling required for nucleation of ET1 but not ET2,ET2 occurs prior to ET1 in the T4 state,and ET1 emerges before ET2 in the T6 state.The extension twins here mainly coordinate the plastic deformation through the non-Schmid effect.Our results shed light on the influence of RE elements on twin evolution in magnesium alloys and have implications in developing high-performance Mg-RE alloys.