期刊文献+
共找到3,139篇文章
< 1 2 157 >
每页显示 20 50 100
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
1
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
2
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
General approach for atomically dispersed precious metal catalysts toward hydrogen reaction 被引量:2
3
作者 Ruisong Li Daoxiong Wu +8 位作者 Peng Rao Peilin Deng Jing Li Junming Luo Wei Huang Qi Chen Zhenye Kang Yijun Shen Xinlong Tian 《Carbon Energy》 SCIE CSCD 2023年第7期100-111,共12页
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig... As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts. 展开更多
关键词 hydrogen evolution reaction hydrogen oxidation reaction photocatalytic hydrogen evolution reaction precious metals single-atom catalysts
下载PDF
Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts 被引量:1
4
作者 Yanqiu Wang Jiayu Hao +6 位作者 Yang Liu Min Liu Kuang Sheng Yue Wang Jun Yang Jie Li Wenzhang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期601-616,I0015,共17页
Developing high performance and low-cost catalysts for oxygen reduction reaction(ORR)in challenging acid condition is vital for proton-exchange-membrane fuel cells(PEMFCs).Carbon-supported nonprecious metal single ato... Developing high performance and low-cost catalysts for oxygen reduction reaction(ORR)in challenging acid condition is vital for proton-exchange-membrane fuel cells(PEMFCs).Carbon-supported nonprecious metal single atom catalysts(SACs)have been identified as potential catalysts in the field.Great advance has been obtained in constructing diverse active sites of SACs for improving the performance and understanding the fundamental principles of regulating acid ORR performance.However,the ORR performance of SACs is still unsatisfactory.Importantly,microenvironment adjustment of SACs offers chance to promote the performance of acid ORR.In this review,acid ORR mechanism,attenuation mechanism and performance improvement strategies of SACs are presented.The strategies for promoting ORR activity of SACs include the adjustment of center metal and its microenvironment.The relationship of ORR performance and structure is discussed with the help of advanced experimental investigations and theoretical calculations,which will offer helpful direction for designing advanced SACs for ORR. 展开更多
关键词 Oxygen reduction reaction Single atom catalysts Microenvironment of center metal Regulation of center metal atoms Electron structure Proton-exchange-membrane fuel cells
下载PDF
Novel ternary metals-based telluride electrocatalyst with synergistic effects of high valence non-3d metal and oxophilic Te for pH-universal hydrogen evolution reaction 被引量:1
5
作者 Seunghwan Jo Wenxiang Liu +5 位作者 Yanan Yue Ki Hoon Shin Keon Beom Lee Hyeonggeun Choi Bo Hou Jung Inn Sohn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期736-743,I0015,共9页
Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline H... Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments. 展开更多
关键词 Telluride catalyst Oxophilic effect High valence non-3d metal Bifunctional mechanism pH-universal hydrogen evolution reaction
下载PDF
The role of morphology on the electrochemical CO_(2) reduction performance of transition metal-based catalysts
6
作者 Umar Mustapha Chidera C.Nnadiekwe +7 位作者 Maria Abdulkarim Alhaboudal Umar Yunusa Abdulhakam Shafiu Abdullahi Ismail Abdulazeez Ijaz Hussain Saheed A.Ganiyu Abdulaziz A.Al-Saadi Khalid Alhooshani 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期198-219,I0007,共23页
The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce C... The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce CO_(2) emissions is a global priority. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO_(2)RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction(HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO_(2)RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency(FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO_(2)RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO_(2) electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO_(2) conversion. 展开更多
关键词 CO_(2)electroreduction Electrochemical reduction of CO_(2) MORPHOLOGY catalystS d-block metals catalysts Faradaic efficiency Selectivity
下载PDF
Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts
7
作者 Shanjun Mao Zhe Wang +7 位作者 Zhirong Chen Kejun Wu Kaichao Zhang Qichuan Li Huihuan Yan Guofeng Lü Guodong Huang Yong Wang 《Nano Materials Science》 EI CAS CSCD 2023年第1期91-100,共10页
Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is s... Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism.This work tries to unravel the mechanism of phenol hydro-genation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions.Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions.The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hy-drogenation,in which two factors are found to be responsible,i.e.the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone,if the specific co-catalyzing effect of H 2 O on Ru is not considered.Based on the above results,a quantitative descriptor,E b(one/pl)/E a,in which E a can be further correlated to the d band center of the noble metal catalyst,is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening. 展开更多
关键词 PHENOL Selective hydrogenation CYCLOHEXANONE DFT Noble metal catalysts
下载PDF
Endeavors on the development of efficient and sustainable supported metal catalysts for chemical synthesis on solid-liquid interfaces
8
作者 Chao Yang Lifeng Cui 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期1-3,共3页
Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy sepa... Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy separation of product with less metal residue,as well as reusability of the high-cost catalysts.Although great effort has been spent,the precise catalytic mechanism of supported metal-catalyzed reactions has not been clearly elucidated and the development of efficient and stable recyclable catalysts remains challenging.This highlight reveals a“molecular fence”metal stabilization strategy and discloses the metal evolution in Pd-catalyzed C-C bond formation reactions using Nheterocyclic carbene(NHC)-functionalized hypercrosslinked polymer support,wherein the polymeric skeleton isolates or confines the metal species involved in the catalytic reactions,and NHC captures free low-valent metal species in solution and stabilizes them on the support via strong metal-support coordination interaction.This strategy creates a novel route for the development of supported metal catalysts with high stability and provides insights into the reaction mechanism of heterogeneous catalysis. 展开更多
关键词 Supported metal catalysts Hypercrosslinked polymers Molecular fence effect C-C bond Formations
下载PDF
Promotion effects of alkali metals on iron molybdate catalysts for CO_(2)catalytic hydrogenation
9
作者 Yong Zhou Aliou Sadia Traore +9 位作者 Deizi V.Peron Alan J.Barrios Sergei A.Chernyak Massimo Corda Olga V.Safonova Achim Iulian Dugulan Ovidiu Ersen Mirella Virginie Vitaly V.Ordomsky Andrei Y.Khodakov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期291-300,I0009,共11页
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly... CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity. 展开更多
关键词 CO_(2)utilization Iron molybdate catalysts PROMOTION Alkali metals Light olefins In-situ characterization
下载PDF
Rare-earth metal catalysts for alkene hydrosilylation 被引量:1
10
作者 Deshuai Liu Boyu Liu +2 位作者 Zexiong Pan Jianfeng Li Chunming Cui 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第5期571-582,共12页
Rare-earth metal catalyzed hydrosilylation of alkenes has emerged as a powerful and selective strategy for the synthesis of organosilanes. This transformation can offer distinctive catalytic sequences and reaction pat... Rare-earth metal catalyzed hydrosilylation of alkenes has emerged as a powerful and selective strategy for the synthesis of organosilanes. This transformation can offer distinctive catalytic sequences and reaction patterns from other catalysts because of the high electropositivity and lack of oxidative-addition process of rare-earth metal. This review summarizes the rare-earth metal catalysts for hydrosilylation of alkene according to the type of ligands. The synthesis and structure of rare-earth metal catalysts,the substrate scope as well as some preliminary structure-activity relationship and mechanism are discussed. 展开更多
关键词 rare-earth metal HYDROSILYLATION ALKENE CATALYSIS MECHANISM
原文传递
Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane 被引量:10
11
作者 翟彦青 熊杰明 +2 位作者 李翠清 徐新 罗国华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第1期54-58,共5页
A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(... A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te... 展开更多
关键词 methane combustion metallic monolith perovskite catalyst preparation method ADHESION catalytic activity rare earths
下载PDF
Efficient and Quick Inactivation of SARS Coronavirus and Other Microbes Exposed to the Surfaces of Some Metal Catalysts 被引量:5
12
作者 JUNHAN LANCHEN +6 位作者 SHU-MINDUAN QING-XIANGYANG MINYANG CHENGAO BAO-YUNZHANG HONGHE XIAO-PINGDONG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第3期176-180,共5页
关键词 metal catalysts INACTIVATION SARS-COV BACULOVIRUS E. coli Infectivity
下载PDF
Selective Oxidation of CO in Excess H_2 over Ru/Al_2O_3 Catalysts Modified with Metal Oxide 被引量:4
13
作者 Xirong Chen Hanbo Zou +2 位作者 Shengzhou Chen Xinfa Dong Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第4期409-414,共6页
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva... The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above. 展开更多
关键词 hydrogen-rich gas ruthenium based catalysts CO removal selective oxidation metal oxide
下载PDF
Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO_(2) reduction 被引量:5
14
作者 Bishnupad Mohanty Suddhasatwa Basu Bikash Kumar Jena 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期444-471,I0012,共29页
The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain t... The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting CO_(2) into other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of CO_(2) to the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of CO_(2) to CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CO_(2) RR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CO_(2)RR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical CO_(2) conversions and highlight the opportunities and challenges. 展开更多
关键词 CO_(2)RR Single-atom catalyst SACs Dual-atom catalyst DACs Transition metals Support catalysts
下载PDF
TiO_2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO_x with NH_3 被引量:5
15
作者 WU Bi-jun LIU Xiao-qin +1 位作者 XIAO Ping WANG Shu-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期615-619,共5页
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele... Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3. 展开更多
关键词 Selective catalytic reduction of NO with NH3 Low-temperature selective catalytic reduction Binary metal oxide catalyst FTIR NH3-TPD
下载PDF
Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction:Recent Advances in the Design of Active and Selective Supported Metal Catalysts 被引量:9
16
作者 Min Zhu Qingfeng Ge Xinli Zhu 《Transactions of Tianjin University》 EI CAS 2020年第3期172-187,共16页
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical... The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization. 展开更多
关键词 Carbon dioxide REVERSE water gas SHIFT reaction METHANATION SUPPORTED metal catalyst Mechanism
下载PDF
Hydrogen production through diesel steam reforming over rare-earth promoted Ni/γ-Al_2O_3 catalysts 被引量:4
17
作者 Lihao Xu Wanliang Mi Qingquan Su 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期287-293,共7页
Rare-earth (La, Ce, Yb) promoted Ni/γ-Al2O3 catalysts were prepared by impregnation method. Activity and carbon formation resistance of the prepared catalysts were evaluated under various reaction conditions. Catal... Rare-earth (La, Ce, Yb) promoted Ni/γ-Al2O3 catalysts were prepared by impregnation method. Activity and carbon formation resistance of the prepared catalysts were evaluated under various reaction conditions. Catalyst characterizations with TG, TPR and H2 chemisorption were carried out to investigate the promoting mechanism. Experimental results show that rare-earth promoters, especially Yb promoter, obviously improve the activity and carbon formation resistance of Ni/γ-Al2O3 catalyst, and Yb-Ni catalyst shows even higher performance than several commercial catalysts. According to the characterization results, Yb promoter enhances the interaction between the active metal and support, thus increasing the active metal's dispersion and improving its performance. Furthermore, the obvious difference in diesel conversion between Yb-Ni catalyst and others was shown in the temperature range of 450-550 °C, which would be the reason for its excellent carbon resistance. 展开更多
关键词 DIESEL steam reforming Ni catalysts rare-earth promoter fuel cell
下载PDF
Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane 被引量:4
18
作者 V.H.Rane S.T.Chaudhari V.R.Choudhary 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期313-320,共8页
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat... Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process. 展开更多
关键词 oxidative coupling of methane alkali metal doped CaO catalysts basicity/base strength distribution catalytic activity/selectivity
下载PDF
Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms 被引量:2
19
作者 Geqian Fang Jian Lin Xiaodong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期18-29,共12页
Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,t... Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,the CAH bond of products is more reactive than that of high thermodynamic stable methane.Exploring an appropriate approach to eliminate the‘‘seesaw effect"between methane conversion and oxygenate selectivity is significant.In this review,we briefly summarize the research progress in the past decade on low-temperature direct conversion of methane to oxygenates in gas-solid-liquid phase over various transition metal(Fe,Cu,Rh,Pd,Au Pd,etc.)based nanoparticle or single-atom catalyst.Furthermore,the prospects of catalyst design and catalysis process are also discussed. 展开更多
关键词 METHANE OXYGENATES Supported metal catalysts NANOPARTICLE Single-atom catalysts
下载PDF
Preparation of Nano-Sized γ-Al_2O_3 Supported Iron Catalyst for Fischer-Tropsch Synthesis by Solvated Metal Atom Impregnation Methods 被引量:2
20
作者 Lihua Yu Xiaoxiang Zhang Zongjie Du Da Wang Shurong Wang Shihua Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期46-52,共7页
Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The ... Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3. 展开更多
关键词 iron clusters solvated metal atom impregnation iron atom precursor complex FischerTropsch synthesis alumina supported catalyst
下载PDF
上一页 1 2 157 下一页 到第
使用帮助 返回顶部