The crystal and electronic structures of LaNi4.75Sn0.25 intermetallics and LaNi4.5Sn0.5Hy (y=2.0, 2.5) intermediate phase have been investigated by the fullpotential linearized augmented plane wave (FP-LAPW) metho...The crystal and electronic structures of LaNi4.75Sn0.25 intermetallics and LaNi4.5Sn0.5Hy (y=2.0, 2.5) intermediate phase have been investigated by the fullpotential linearized augmented plane wave (FP-LAPW) method. Hydrogen occupation sites in LaNi4.5Sn0.5Hy have been determined based on Westlake's criterions: (1) the minimum hole radiuS is 0.04 nm; (2) the minimum H-H distance is 0.21 nm; as well as geometry optimizations and internal coordinates optimizations. We find that hydrogen atoms prefer to occupy the 12n*, 6m, 12o, 6m* sites in LaNi4.5Sn0.5H2.0 and the 6m*, 4h, 6m, 12o, 12n* sites in LaNi4.5Sn0.5H2.5. The specific coordinates of hydrogen atoms in LaNi4.5Sn0.5Hy are also determined. The results show that hydrogen atoms tend to keep away from tin atoms. The maximum hydrogen content decreases compared with LaNi5. The interactions between Sn and Ni with H play a dominate role in the stability of LaNi4.5Sn0.5-H system. Lattice expansion and increment of Fermi energy EF show that both Sn and H atoms decrease structural stability of these alloys.展开更多
As novel negative electrode materials for alkaline batteries, the electrochemical properties of four lanthanum transition-metal (La-TM) complex oxides LaTiO(3), LaVO(4), LaCrO(3) and LaMnO(3) were investigated. X-ray ...As novel negative electrode materials for alkaline batteries, the electrochemical properties of four lanthanum transition-metal (La-TM) complex oxides LaTiO(3), LaVO(4), LaCrO(3) and LaMnO(3) were investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) were employed to characterize their microstructures. All the La-TM oxides were made up of single phases. Electrochemical measurements showed that the maximum discharge capacities of LaTiO(3), LaVO(4), LaCrO(3), and LaMnO(3) electrodes at 303 K were 367, 187, 318, and 278 mAh/g, respectively. X-ray photoelectron spectroscopy (XPS) and XRD Rietveld analysis were carried out to discuss the electrochemical reaction mechanism. Electrode kinetics was studied by electrochemical impedance spectrum (EIS). The results showed that the maximum discharge capacity was directly related to the charge-transfer resistance (R(ct)) of La-TM oxide electrode. The cyclic properties of the four oxides should be further improved and the discharge capacity of LaMnO(3) (about 96 mAh/g) was the highest after 10(th) charge/discharge cycles.展开更多
The magnetic properties,magnetocaloric effect and magnetoresistance in Er Ni single crystal have been investigated in detail.With decreasing temperature,Er Ni single crystal undergoes two successive magnetic transitio...The magnetic properties,magnetocaloric effect and magnetoresistance in Er Ni single crystal have been investigated in detail.With decreasing temperature,Er Ni single crystal undergoes two successive magnetic transitions:a paramagnetic to ferromagnetic transition at T_(C)=11 K and a spin-reorientation transition at TS_(R)=5 K.Meanwhile,a sharp field-induced metamagnetic transition is observed below the T_(C)along the a axis.Er Ni single crystal possesses a giant magnetocaloric effect around T_(C).The maximum magnetic entropy change is-36.1 J(kg K)^(-1)along the a axis under the field change of 0-50 k Oe.In particular,the rotating magnetocaloric effect in Er Ni single crystal reaches its maximum under a relatively low field,and the maximum rotating entropy change with a value of 9.3 J(kg K)^(-1)is obtained by rotating the applied field from the[011]to[100]directions under 13 k Oe.These results suggest that Er Ni could be a promising candidate for magnetic refrigeration working at liquid-helium temperature region.Moreover,a complicated transport behavior is uncovered in Er Ni single crystal,which is attributed to the complex magnetic states and magnetic polaronic effect.Both positive and negative magnetoresistance are observed.A considerable large magnetoresistance with the value of-34.5%is acquired at 8 K under50 k Oe when the field is along the[100]direction.展开更多
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2 Fe17 compounds and their paraffin composites. It is found that the introduction of S...In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2 Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2 Fe17 compounds, making the R2 Fe17 exSix-paraffin composites excellent microwave absorption materials(MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε’ by about 40%e50%, which finally enhances the performance of the microwave absorption. The peak frequency(fRL) of the reflection loss(RL) curve moves toward high frequency domain and the qualified bandwidth(QB, RL≤-10 dB) increases remarkably. The maximum QB of 3.3 GHz(12.0 e15.3 GHz) is obtained for the Sm1.5 Y0.5 Fe15 Si2-paraffin composite(d = 1.0 mm) and the maximum RL of -53.6 dB is achieved for Nd2 Fe15 Si2-paraffin composite(d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.展开更多
基金the support from the Department of Science and Technology of Henan Province (No.082300410050)the Program for Science and Technology Innovation Talents in Universities of Henan Province (No.2008HASTIT008)
文摘The crystal and electronic structures of LaNi4.75Sn0.25 intermetallics and LaNi4.5Sn0.5Hy (y=2.0, 2.5) intermediate phase have been investigated by the fullpotential linearized augmented plane wave (FP-LAPW) method. Hydrogen occupation sites in LaNi4.5Sn0.5Hy have been determined based on Westlake's criterions: (1) the minimum hole radiuS is 0.04 nm; (2) the minimum H-H distance is 0.21 nm; as well as geometry optimizations and internal coordinates optimizations. We find that hydrogen atoms prefer to occupy the 12n*, 6m, 12o, 6m* sites in LaNi4.5Sn0.5H2.0 and the 6m*, 4h, 6m, 12o, 12n* sites in LaNi4.5Sn0.5H2.5. The specific coordinates of hydrogen atoms in LaNi4.5Sn0.5Hy are also determined. The results show that hydrogen atoms tend to keep away from tin atoms. The maximum hydrogen content decreases compared with LaNi5. The interactions between Sn and Ni with H play a dominate role in the stability of LaNi4.5Sn0.5-H system. Lattice expansion and increment of Fermi energy EF show that both Sn and H atoms decrease structural stability of these alloys.
基金Project supported by the National Natural Science Foundation of China (50971096)
文摘As novel negative electrode materials for alkaline batteries, the electrochemical properties of four lanthanum transition-metal (La-TM) complex oxides LaTiO(3), LaVO(4), LaCrO(3) and LaMnO(3) were investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) were employed to characterize their microstructures. All the La-TM oxides were made up of single phases. Electrochemical measurements showed that the maximum discharge capacities of LaTiO(3), LaVO(4), LaCrO(3), and LaMnO(3) electrodes at 303 K were 367, 187, 318, and 278 mAh/g, respectively. X-ray photoelectron spectroscopy (XPS) and XRD Rietveld analysis were carried out to discuss the electrochemical reaction mechanism. Electrode kinetics was studied by electrochemical impedance spectrum (EIS). The results showed that the maximum discharge capacity was directly related to the charge-transfer resistance (R(ct)) of La-TM oxide electrode. The cyclic properties of the four oxides should be further improved and the discharge capacity of LaMnO(3) (about 96 mAh/g) was the highest after 10(th) charge/discharge cycles.
基金financially supported by the Natural Science Foundation of Jiangxi Province(No.20202BAB214002)the Jiangxi Provincial Education Department’s Research Project of Science and Technology(No.GJJ190484)+4 种基金the Scientific Research Start-up Foundation of Jiangxi University of Science and Technology(Grant No.3401223366)the National Natural Science Foundation of China(Nos.52061014,51671097 and 52071323)Ganzhou Science and Technology Innovation Talent Plan(No.3208000033)the Key Project of Natural Science Foundation of Jiangxi Province(No.20192ACB20004)the Graduate Student Innovation Special Funds Project of Jiangxi Province(No.YC2019-S303)。
文摘The magnetic properties,magnetocaloric effect and magnetoresistance in Er Ni single crystal have been investigated in detail.With decreasing temperature,Er Ni single crystal undergoes two successive magnetic transitions:a paramagnetic to ferromagnetic transition at T_(C)=11 K and a spin-reorientation transition at TS_(R)=5 K.Meanwhile,a sharp field-induced metamagnetic transition is observed below the T_(C)along the a axis.Er Ni single crystal possesses a giant magnetocaloric effect around T_(C).The maximum magnetic entropy change is-36.1 J(kg K)^(-1)along the a axis under the field change of 0-50 k Oe.In particular,the rotating magnetocaloric effect in Er Ni single crystal reaches its maximum under a relatively low field,and the maximum rotating entropy change with a value of 9.3 J(kg K)^(-1)is obtained by rotating the applied field from the[011]to[100]directions under 13 k Oe.These results suggest that Er Ni could be a promising candidate for magnetic refrigeration working at liquid-helium temperature region.Moreover,a complicated transport behavior is uncovered in Er Ni single crystal,which is attributed to the complex magnetic states and magnetic polaronic effect.Both positive and negative magnetoresistance are observed.A considerable large magnetoresistance with the value of-34.5%is acquired at 8 K under50 k Oe when the field is along the[100]direction.
基金Project supported by the National Key Research and Development Program of China(2016YFB0700901,2017YFA0403701)National Natural Science Foundation of China(51731001,11675006,11805006)
文摘In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2 Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2 Fe17 compounds, making the R2 Fe17 exSix-paraffin composites excellent microwave absorption materials(MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε’ by about 40%e50%, which finally enhances the performance of the microwave absorption. The peak frequency(fRL) of the reflection loss(RL) curve moves toward high frequency domain and the qualified bandwidth(QB, RL≤-10 dB) increases remarkably. The maximum QB of 3.3 GHz(12.0 e15.3 GHz) is obtained for the Sm1.5 Y0.5 Fe15 Si2-paraffin composite(d = 1.0 mm) and the maximum RL of -53.6 dB is achieved for Nd2 Fe15 Si2-paraffin composite(d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.