Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the S...Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the SGFB,including the Xuebaoding,Jiajika,Keeryin rare metal deposits and Danba muscovite deposit(Li Jiankang et al.,2015).The newly discovered super-large Lijiagou展开更多
1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit re...1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit recently discovered.Few studies have been made of its petrology,mineralogy,geochemistry,chronology and metallogeny.In recent years,several exploratory drillings have been done in this deposit.These drilling holes,from 380 to 600展开更多
The Abu Dabbab albite granite(ADAG),in the central Eastern Desert of Egypt,hosts the most significant rare metal ore deposit in the northern part of the Neoproterozoic Arabian-Nubian Shield.Here,we report detailed fie...The Abu Dabbab albite granite(ADAG),in the central Eastern Desert of Egypt,hosts the most significant rare metal ore deposit in the northern part of the Neoproterozoic Arabian-Nubian Shield.Here,we report detailed field,petrographic,mineralogical and geochemical investigation of the ADAG,an isolated stock-like granitic body with sharp intrusive contacts against metamorphic country rocks,probably emplaced at about 600 Ma.The fine-grained porphyritic upper unit is a preserved remnant of the shallowly-emplaced apex of the magma chamber,whereas the medium-grained lower unit crystallized at deeper levels under subvolcanic conditions.The peraluminous leucocratic ADAG shares common geochemical characteristics with post-collisional intraplate A-type magmas.In addition to the conspicuous enrichment in Na2O,the ADAG is remarkable for its anomalous concentrations of Ta,Nb,Li,Hf,Ga,Sn,Zn and heavy rare-earth elements.Nb-Ta minerals in the ADAG are mixed with Fe-Mn oxides,forming black patches that increase in abundance toward of the base of the intrusion.Columbite-tantalite,cassiterite and wolframite are the most important ore minerals.Pronounced negative Eu anomalies(Eu/Eu*=0.10–0.24)reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interaction.The ADAG was most likely generated by partial melting of the juvenile middle crust of the ANS as the geotherm was elevated by erosional uplift following lithospheric delamination and it was emplaced at the intersection of lineations of structural weakness.Although formation of the ADAG and its primary enrichment in rare metals are essentially due to magmatic processes,late-stage metasomatism caused limited redistribution of rare metals.Fluid-driven subsolidus modification was limited to the apex of the magma chamber and drove development of greisen,amazonite,and quartz veins along fracture systems.展开更多
New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare-metal bearing A-type granites of the Aja intrusive complex(AIC) in the northern segment of the Arabian Shield. This comp...New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare-metal bearing A-type granites of the Aja intrusive complex(AIC) in the northern segment of the Arabian Shield. This complex is characterized by discontinuous ring-shaped outcrops cut by later faulting. The A-type rocks of the AIC are late Neoproterozoic post-collisional granites, including alkali feldspar granite, alkaline granite and peralkaline granite. They represent the outer zones of the AIC, surrounding a core of older rocks including monzogranite, syenogranite and granophyre granite. The sharp contacts between A-type granites of the outer zone and the different granitic rocks of the inner zone suggest that the AIC was emplaced as different phases over a time interval, following complete crystallization of earlier batches. The A-type granites represent the late intrusive phases of the AIC, which were emplaced during tectonic extension, as shown by the emplacement of dykes synchronous with the granite emplacement and the presence of cataclastic features. The A-type granites consist of K-feldspars, quartz, albite, amphiboles and sodic pyroxene with a wide variety of accessory minerals, including Fe-Ti oxides, zircon, allanite, fluorite, monazite, titanite, apatite, columbite, xenotime and epidote. They are highly evolved(71.3–75.8 wt% SiO2) and display the typical geochemical characteristics of post-collisional, within-plate granites. They are rare-metal granites enriched in total alkalis, Nb, Zr, Y, Ga, Ta, REE with low CaO, MgO, Ba, and Sr. Eu-negative anomalies(Eu/Eu* = 0.17–0.37) of the A-type granites reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interactions. The chemical characteristics indicate that the A-type granites of the AIC represent products of extreme fractional crystallization involving alkali feldspar, quartz and, to a lesser extent, ferromagnesian minerals. The parent magma was derived from the partial melting of a juvenile crustal protolith with a mantle contribution. Accumulation of residual volatile-rich melt and exsolved fluids in the late stage of the magma evolution produced pegmatite and quartz veins that cut the peripheries of the AIC. Post-magmatic alteration related to the final stages of the evolution of the A-type granitic magma, indicated by alterations of sodic amphibole and sodic pyroxene, hematitization and partial albitization.展开更多
Limu granite massif is a rather typical Mesozoic rare-metal granite in South China . Studying Limu granite massif has important petrological significance for understanding the genesis of rare-metal granites .This pape...Limu granite massif is a rather typical Mesozoic rare-metal granite in South China . Studying Limu granite massif has important petrological significance for understanding the genesis of rare-metal granites .This paper deals with the typical petrographic characteristics and peculiarity of REE in massif , and discusses the genesis of Limu granite massif in terms of analysis of these characteristics . It is suggested that Limu granite massif is derivative product of a high ordered superimposed -remelting granitic magma .展开更多
The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masse...The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.展开更多
Described in this paper are the characteristics of tetrad effects of REE in rare-metal granites.Based on the analytical data and experimental geochemical data available,it is pointed out that the tetrad effects of REE...Described in this paper are the characteristics of tetrad effects of REE in rare-metal granites.Based on the analytical data and experimental geochemical data available,it is pointed out that the tetrad effects of REE in the granites are produced in the metal-fluid system.Intense fractional crystallization of granitic melt(containing REE accessary minerals)and its interaction with volatile-rich(F,Cl)fluid are the major factors leading to the tetrad effects of REE.From this,this paper presents a composite genetic model for high-degree fractional crystallization-volatile-rich fluid metasomatism of rare-metal granites.With the model,quantitative calculations have been made.Meanwhile,it is pointed out that the tetrad effects of REE can be used as an important indicator to distinguish mineralized granites from barren ones.展开更多
The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous ...The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous giant spodumene pegmatite deposits and ore fields,including Jiajika and Ke’eryin in western Sichuan Province,Zhawulong on the border between the Sichuan and Qinghai Provinces,and Dahongliutan in Xinjiang Region.These form the Songpan-Ganze-West Kunlun(SP-GZ-WK) pegmatite-type rare-metal metallogenic belt.The pegmatite type rare-metal deposits in this belt are hosted in the metamorphic thermal domes in the metamorphosed flysh of the Triassic Xikang and Bayankalashan Groups.The mineralized pegmatites are intimately related to the Li-and volatile-rich two-mica granites that are peraluminous and have high(Li+Na+K)/(Mn+Fe+Mg+Ca+Ti) ratios.Pegmatites and granites in individual ore field throughout the belt typically form a cogenetic granite-pegmatite system,in which pegmatite dikes commonly surround granites.Spodumene is the predominant ore mineral in most pegmatites with limited hydrothermal alteration.In the granite-pegmatite systems,granitic magmas were emplaced under P-T conditions of 800–850°C and ~550 MPa,while spodumene crystallized in an alkaline environment.The granite-pegmatite systems share similar Sr-Nd-Hf-Li isotopic compositions to the metasediments of the Xikang and Bayankalashan Groups.The δ7Li values tend to increase from the granites to the Li-poor pegmatites,whereas the reverse is observed between the Li-poor and Li-rich pegmatites.These geochronological data suggest that the granite-pegmatite systems formed in the Late Triassic and tend to be progressively younger from the outer to the inner zones of the metallogenic belt.These characteristics show that the granitic-pegmatitic melts were derived from the anatexis of the Xikang and Bayankalashan Groups during the Paleo-Tethyan orogeny in the Late Triassic.The separation of pegmatitic melts from granitic magmas can be best explained using the Jiajika-style “melt-melt immiscibility” or the Ke’eryin-style “fractional crystallization+melt-melt immiscibility” model.High-maturity terrestrial sediments are of key importance for the anatexis that results in the granitepegmatite melts.The bidirectional tectonic stresses in the Songpan-Ganze orogenic belt may have caused the mineralization difference between the Jiajika deposit and the Ke’eryin ore field.These features indicate the controls of the combination of orogenic deformation,metapelites anatexis,and magmatic differentiation on the rare-metal mineralization of pegmatites.We suggest that pegmatites,pegmatite–parental granite,and their protoliths are important indicators for rare-metal mineralization in the SP-GZ-WK pegmatite type rare-metal metallogenic belt.Based on the widespread presence of fertile metasediments and well development of metamorphic thermal dome,highly differentiated granites,and regional zonation of pegmatites,the Zhawulong ore field is the most prospective area for rare metals and thus should be the priority for future exploration.展开更多
The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline gr...The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline granite and garnet granite, which have been identified in previous studies, as well as albite granite and granitic pegmatite that were identified in this investigation. Fifteen leucogranite plutons were studied and 12 were found to contain rare-metal bearing minerals such as beryl(the representative of Be mineralization), columbite-group minerals, tapiolite, pyrochlore-microlite, fergusonite, Nb-Ta rutile(the representative of Nb-Ta mineralization), and cassiterite(the representative of Sn mineralization) mainly based on the field trip,microscope observation and microprobe analysis. The preliminary result shows that the Himalayan leucogranite is commonly related to the rare-metal mineralization and warrants future investigation. Further exploration and intensive research work is important in determining the rare-metal resource potential of this area.展开更多
基金funded by the Natural Science Foundation of China (grant No. 41702074)Sichuan Education Department Foundation (grant No. 17ZA0039)+2 种基金Young and Middle-Aged Teacher Foster Program of Chengdu University of Technology (grant No. JXGG201701)Opening Foundation of Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Ministry of Land and Resources (grant No. gzck2018003)Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration in Guilin University of Technology (grant No. 12-071-20)
文摘Objective The Songpan-Garze Fold Belt(SGFB),located in the eastern part of the Tibet Plateau and west of the Sichuan Basin,is an important pegmatite province in China.Some famous pegmatite type deposits occur in the SGFB,including the Xuebaoding,Jiajika,Keeryin rare metal deposits and Danba muscovite deposit(Li Jiankang et al.,2015).The newly discovered super-large Lijiagou
基金supported by MOST of China 2016YFC0600408Investigation of Rare Metal, Rare Earth, and Rare-scattered Mineral Resources in South China (DD20160056)
文摘1 Introduction Rare-metal granites are widely distributed in South China.The Daping porphyritic granitic Ta-Nb deposit,located in the Yongding area of south Fujian province,South China,is a large rare-metal deposit recently discovered.Few studies have been made of its petrology,mineralogy,geochemistry,chronology and metallogeny.In recent years,several exploratory drillings have been done in this deposit.These drilling holes,from 380 to 600
基金the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1439-037。
文摘The Abu Dabbab albite granite(ADAG),in the central Eastern Desert of Egypt,hosts the most significant rare metal ore deposit in the northern part of the Neoproterozoic Arabian-Nubian Shield.Here,we report detailed field,petrographic,mineralogical and geochemical investigation of the ADAG,an isolated stock-like granitic body with sharp intrusive contacts against metamorphic country rocks,probably emplaced at about 600 Ma.The fine-grained porphyritic upper unit is a preserved remnant of the shallowly-emplaced apex of the magma chamber,whereas the medium-grained lower unit crystallized at deeper levels under subvolcanic conditions.The peraluminous leucocratic ADAG shares common geochemical characteristics with post-collisional intraplate A-type magmas.In addition to the conspicuous enrichment in Na2O,the ADAG is remarkable for its anomalous concentrations of Ta,Nb,Li,Hf,Ga,Sn,Zn and heavy rare-earth elements.Nb-Ta minerals in the ADAG are mixed with Fe-Mn oxides,forming black patches that increase in abundance toward of the base of the intrusion.Columbite-tantalite,cassiterite and wolframite are the most important ore minerals.Pronounced negative Eu anomalies(Eu/Eu*=0.10–0.24)reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interaction.The ADAG was most likely generated by partial melting of the juvenile middle crust of the ANS as the geotherm was elevated by erosional uplift following lithospheric delamination and it was emplaced at the intersection of lineations of structural weakness.Although formation of the ADAG and its primary enrichment in rare metals are essentially due to magmatic processes,late-stage metasomatism caused limited redistribution of rare metals.Fluid-driven subsolidus modification was limited to the apex of the magma chamber and drove development of greisen,amazonite,and quartz veins along fracture systems.
基金The authors extend their appreciation to the Deanship of Scientific ResearchHa’il Universityfor supporting this work through research project no.SCB-0150175
文摘New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare-metal bearing A-type granites of the Aja intrusive complex(AIC) in the northern segment of the Arabian Shield. This complex is characterized by discontinuous ring-shaped outcrops cut by later faulting. The A-type rocks of the AIC are late Neoproterozoic post-collisional granites, including alkali feldspar granite, alkaline granite and peralkaline granite. They represent the outer zones of the AIC, surrounding a core of older rocks including monzogranite, syenogranite and granophyre granite. The sharp contacts between A-type granites of the outer zone and the different granitic rocks of the inner zone suggest that the AIC was emplaced as different phases over a time interval, following complete crystallization of earlier batches. The A-type granites represent the late intrusive phases of the AIC, which were emplaced during tectonic extension, as shown by the emplacement of dykes synchronous with the granite emplacement and the presence of cataclastic features. The A-type granites consist of K-feldspars, quartz, albite, amphiboles and sodic pyroxene with a wide variety of accessory minerals, including Fe-Ti oxides, zircon, allanite, fluorite, monazite, titanite, apatite, columbite, xenotime and epidote. They are highly evolved(71.3–75.8 wt% SiO2) and display the typical geochemical characteristics of post-collisional, within-plate granites. They are rare-metal granites enriched in total alkalis, Nb, Zr, Y, Ga, Ta, REE with low CaO, MgO, Ba, and Sr. Eu-negative anomalies(Eu/Eu* = 0.17–0.37) of the A-type granites reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interactions. The chemical characteristics indicate that the A-type granites of the AIC represent products of extreme fractional crystallization involving alkali feldspar, quartz and, to a lesser extent, ferromagnesian minerals. The parent magma was derived from the partial melting of a juvenile crustal protolith with a mantle contribution. Accumulation of residual volatile-rich melt and exsolved fluids in the late stage of the magma evolution produced pegmatite and quartz veins that cut the peripheries of the AIC. Post-magmatic alteration related to the final stages of the evolution of the A-type granitic magma, indicated by alterations of sodic amphibole and sodic pyroxene, hematitization and partial albitization.
文摘Limu granite massif is a rather typical Mesozoic rare-metal granite in South China . Studying Limu granite massif has important petrological significance for understanding the genesis of rare-metal granites .This paper deals with the typical petrographic characteristics and peculiarity of REE in massif , and discusses the genesis of Limu granite massif in terms of analysis of these characteristics . It is suggested that Limu granite massif is derivative product of a high ordered superimposed -remelting granitic magma .
文摘The garnet muscovite granitic pegmatite of Um Solimate,in southern Egypt,represents a promising asset for strategic and economic metals,especially Bi-Ni-Ag-Nb-Ta as well as U and Th.The ore bodies occur as large masses,pockets and/or veins of very coarse-grained pegmatites,which consist mainly of K-feldspar,quartz and albite with subordinate muscovite,garnet,and biotite.Radiometric data revealed that e U-and e Th-contents of the pegmatites reach up to 39 ppm and 82 ppm,respectively.The studied pegmatites are enriched in primary U and Th minerals(uraninite,coffinite,thorianite and uranothorite)as well as Hf-rich zircon and monazite,which give rise to anomalous radioactive zones.Niobium-tantalium-bearing minerals(i.e.ferrocolumbite,microlite and uranopyrochlore),xenotime,barite,galena,fluorite,and apatite are ubiquitous,and,consequently,the studied pegmatites belong tothe Niobium-Yttrium-Fluorine-type(NYF)family.The noble metal mineralization includes argentite(Ag_(2)S),native Ni and Bi as well as bismite and bismoclite.In addition,beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies.The observed compositional variations of Ta/(Ta+Nb)and Mn/(Mn+Fe)ratios in columbite(0.08-0.45 and 0.11-0.57,respectively)and Hf contents in zircon(3.54-6.46 wt%)may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.
文摘Described in this paper are the characteristics of tetrad effects of REE in rare-metal granites.Based on the analytical data and experimental geochemical data available,it is pointed out that the tetrad effects of REE in the granites are produced in the metal-fluid system.Intense fractional crystallization of granitic melt(containing REE accessary minerals)and its interaction with volatile-rich(F,Cl)fluid are the major factors leading to the tetrad effects of REE.From this,this paper presents a composite genetic model for high-degree fractional crystallization-volatile-rich fluid metasomatism of rare-metal granites.With the model,quantitative calculations have been made.Meanwhile,it is pointed out that the tetrad effects of REE can be used as an important indicator to distinguish mineralized granites from barren ones.
基金supported by the Chinese National Key R&D Program (Grant No. 2019YFC0605200)the National Natural Science Foundation of China (Grant Nos. 41872096 and 42002109)the China Geological Survey Project (Grant Nos. DD20221684 and DD20230289)。
文摘The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous giant spodumene pegmatite deposits and ore fields,including Jiajika and Ke’eryin in western Sichuan Province,Zhawulong on the border between the Sichuan and Qinghai Provinces,and Dahongliutan in Xinjiang Region.These form the Songpan-Ganze-West Kunlun(SP-GZ-WK) pegmatite-type rare-metal metallogenic belt.The pegmatite type rare-metal deposits in this belt are hosted in the metamorphic thermal domes in the metamorphosed flysh of the Triassic Xikang and Bayankalashan Groups.The mineralized pegmatites are intimately related to the Li-and volatile-rich two-mica granites that are peraluminous and have high(Li+Na+K)/(Mn+Fe+Mg+Ca+Ti) ratios.Pegmatites and granites in individual ore field throughout the belt typically form a cogenetic granite-pegmatite system,in which pegmatite dikes commonly surround granites.Spodumene is the predominant ore mineral in most pegmatites with limited hydrothermal alteration.In the granite-pegmatite systems,granitic magmas were emplaced under P-T conditions of 800–850°C and ~550 MPa,while spodumene crystallized in an alkaline environment.The granite-pegmatite systems share similar Sr-Nd-Hf-Li isotopic compositions to the metasediments of the Xikang and Bayankalashan Groups.The δ7Li values tend to increase from the granites to the Li-poor pegmatites,whereas the reverse is observed between the Li-poor and Li-rich pegmatites.These geochronological data suggest that the granite-pegmatite systems formed in the Late Triassic and tend to be progressively younger from the outer to the inner zones of the metallogenic belt.These characteristics show that the granitic-pegmatitic melts were derived from the anatexis of the Xikang and Bayankalashan Groups during the Paleo-Tethyan orogeny in the Late Triassic.The separation of pegmatitic melts from granitic magmas can be best explained using the Jiajika-style “melt-melt immiscibility” or the Ke’eryin-style “fractional crystallization+melt-melt immiscibility” model.High-maturity terrestrial sediments are of key importance for the anatexis that results in the granitepegmatite melts.The bidirectional tectonic stresses in the Songpan-Ganze orogenic belt may have caused the mineralization difference between the Jiajika deposit and the Ke’eryin ore field.These features indicate the controls of the combination of orogenic deformation,metapelites anatexis,and magmatic differentiation on the rare-metal mineralization of pegmatites.We suggest that pegmatites,pegmatite–parental granite,and their protoliths are important indicators for rare-metal mineralization in the SP-GZ-WK pegmatite type rare-metal metallogenic belt.Based on the widespread presence of fertile metasediments and well development of metamorphic thermal dome,highly differentiated granites,and regional zonation of pegmatites,the Zhawulong ore field is the most prospective area for rare metals and thus should be the priority for future exploration.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41230315 and 41130313)the Fundamental Research Funds for the Central Universities (Grants No. 020614380057)
文摘The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline granite and garnet granite, which have been identified in previous studies, as well as albite granite and granitic pegmatite that were identified in this investigation. Fifteen leucogranite plutons were studied and 12 were found to contain rare-metal bearing minerals such as beryl(the representative of Be mineralization), columbite-group minerals, tapiolite, pyrochlore-microlite, fergusonite, Nb-Ta rutile(the representative of Nb-Ta mineralization), and cassiterite(the representative of Sn mineralization) mainly based on the field trip,microscope observation and microprobe analysis. The preliminary result shows that the Himalayan leucogranite is commonly related to the rare-metal mineralization and warrants future investigation. Further exploration and intensive research work is important in determining the rare-metal resource potential of this area.