期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The effect of surface roughness on rarefied gas flows by lattice Boltzmann method 被引量:1
1
作者 刘超峰 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4554-4561,共8页
This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential... This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics. 展开更多
关键词 surface roughness lattice Boltzmann method rarefied gas flows velocity slip
下载PDF
General Synthetic Iterative Scheme for Unsteady Rarefied Gas Flows
2
作者 Jianan Zeng Wei Su Lei Wu 《Communications in Computational Physics》 SCIE 2023年第6期173-207,共35页
In rarefied gas flows,the spatial grid size could vary by several orders of magnitude in a single flow configuration(e.g.,inside the Knudsen layer it is at the order of mean free path of gas molecules,while in the bul... In rarefied gas flows,the spatial grid size could vary by several orders of magnitude in a single flow configuration(e.g.,inside the Knudsen layer it is at the order of mean free path of gas molecules,while in the bulk region it is at a much larger hydrodynamic scale).Therefore,efficient implicit numerical method is urgently needed for time-dependent problems.However,the integro-differential nature of gas kinetic equations poses a grand challenge,as the gain part of the collision operator is non-invertible.Hence an iterative solver is required in each time step,which usually takes a lot of iterations in the(near)continuum flow regime where the Knudsen number is small;worse still,the solution does not asymptotically preserve the fluid dynamic limit when the spatial cell size is not refined enough.Based on the general synthetic iteration scheme for steady-state solution of the Boltzmann equation,we propose two numerical schemes to push the multiscale simulation of unsteady rarefied gas flows to a new boundary,that is,the numerical solution not only converges within dozens of iterations in each time step,but also asymptotically preserves the Navier-Stokes-Fourier limit in the continuum flow regime,when the spatial grid is coarse,and the time step is large(e.g.,in simulating the extreme slow decay of two-dimensional Taylor vortex,the time step is even at the order of vortex decay time).The properties of fast convergence and asymptotic preserving of the proposed schemes are not only rigorously proven by the Fourier stability analysis for simplified gas kinetic models,but also demonstrated by several numerical examples for the gas kinetic models and the Boltzmann equation. 展开更多
关键词 Unsteady rarefied gas flow general synthetic iterative scheme fast convergence asymptotic Navier-Stokes preserving
原文传递
DIRECT NUMERICAL TEST OF THE B-G-K MODEL EQUATION BY THE DSMC METHOD
3
作者 沈青 易志强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第2期133-140,共8页
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour fiel... In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed. 展开更多
关键词 BGK model equation DSMC method rarefied gas flow Rayleigh problem
下载PDF
Smart Wall Model for Molecular Dynamics Simulations of Nanoscale Gas Flows
4
作者 Murat Barisik Bohung Kim Ali Beskok 《Communications in Computational Physics》 SCIE 2010年第5期977-993,共17页
Three-dimensional molecular dynamics (MD) simulations of gas flows con-fined within nano-scale channels are investigated by introduction of a smart wall modelthat drastically reduces the memory requirements of MD simu... Three-dimensional molecular dynamics (MD) simulations of gas flows con-fined within nano-scale channels are investigated by introduction of a smart wall modelthat drastically reduces the memory requirements of MD simulations for gas flows.The smart wall molecular dynamics (SWMD) represents three-dimensional FCC wallsusing only 74 wall molecules. This structure is kept in the memory and utilized foreach gas molecule surface collision. Linear Couette flow of argon at Knudsen number10 is investigated using the SWMD utilizing Lennard-Jones potential interactions. Effects of the domain size on the periodicity boundary conditions are investigated usingthree-dimensional simulations. Domain sizes that are one mean-free-path long in theperiodic dimensions are sufficient to obtain domain-size independent MD solutions ofnano-scale confined gas flows. Comparisons between the two- and three-dimensionalsimulations show the inadequacy of two-dimensional MD results. Three-dimensionalSWMD simulations have shown significant deviations of the velocity profile and gasdensity from the kinetic theory based predictions within the force penetration regionof the walls. 展开更多
关键词 rarefied gas flows kinetic theory surface effects
原文传递
An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows
5
作者 Tengfei Liang Wenjing Ye 《Communications in Computational Physics》 SCIE 2014年第1期246-264,共19页
Aiming at simulating micro gas flows with accurate boundary conditions,an efficient hybrid algorithm is developed by combining the molecular dynamics(MD)method with the direct simulation Monte Carlo(DSMC)method.The ef... Aiming at simulating micro gas flows with accurate boundary conditions,an efficient hybrid algorithm is developed by combining the molecular dynamics(MD)method with the direct simulation Monte Carlo(DSMC)method.The efficiency comes from the fact that the MD method is applied only within the gas-wall interaction layer,characterized by the cut-off distance of the gas-solid interaction potential,to resolve accurately the gas-wall interaction process,while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer.A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface,hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle.Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the“smart-wall model”proposed by Barisik et al.The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem.Both the accuracy and efficiency of the hybrid algorithm are discussed.As an application,the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface.Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. 展开更多
关键词 rarefied gas flows surface effect multi-scale methods
原文传递
Rotational Slip Flow in Coaxial Cylinders by the Finite-Difference Lattice Boltzmann Methods
6
作者 Minoru Watari 《Communications in Computational Physics》 SCIE 2011年第5期1293-1314,共22页
Recent studies on applications of the lattice Boltzmann method(LBM)and the finite-difference lattice Boltzmann method(FDLBM)to velocity slip simulations are mostly on one-dimensional(1D)problems such as a shear flow b... Recent studies on applications of the lattice Boltzmann method(LBM)and the finite-difference lattice Boltzmann method(FDLBM)to velocity slip simulations are mostly on one-dimensional(1D)problems such as a shear flow between parallel plates.Applications to a 2D problem may raise new issues.The author performed numerical simulations of rotational slip flow in coaxial cylinders as an example of 2D problem.Two types of 2D models were used.The first were multi-speed FDLBM models proposed by the author.The second was a standard LBM,the D2Q9 model.The simulations were performed applying a finite difference scheme to both the models.The study had two objectives.The first was to investigate the accuracies of LBM and FDLBM on applications to rotational slip flow.The second was to obtain an experience on application of the cylindrical coordinate system.The FDLBM model with 8 directions and the D2Q9 model showed an anisotropic flow pattern when the relaxation time constant or the Knudsen number was large.The FDLBM model with 24 directions showed accurate results even at large Knudsen numbers. 展开更多
关键词 Finite-difference lattice Boltzmann method rarefied gas flow rotational slip flow cylindrical coordinate
原文传递
SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION 被引量:1
7
作者 Irene M.Gamba Sri Harsha Tharkabhushanam 《Journal of Computational Mathematics》 SCIE CSCD 2010年第4期430-460,共31页
The numerical approximation of the Spectral-Lagrangian scheme developed by the authors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is extended to the space inhomogeneous case and severa... The numerical approximation of the Spectral-Lagrangian scheme developed by the authors in [30] for a wide range of homogeneous non-linear Boltzmann type equations is extended to the space inhomogeneous case and several shock problems are benchmark. Recognizing that the Boltzmann equation is an important tool in the analysis of formation of shock and boundary layer structures, we present the computational algorithm in Section 3.3 and perform a numerical study case in shock tube geometries well modeled in for ID in x times 3D in v in Section 4. The classic Riemann problem is numerically analyzed for Knudsen numbers close to continuum. The shock tube problem of Aoki et al [2], where the wall temperature is suddenly increased or decreased, is also studied. We consider the problem of heat transfer between two parallel plates with diffusive boundary conditions for a range of Knudsen numbers from close to continuum to a highly rarefied state. Finally, the classical infinite shock tube problem that generates a non-moving shock wave is studied. The point worth noting in this example is that the flow in the final case turns from a supersonic flow to a subsonic flow across the shock. 展开更多
关键词 Spectral Numerical Methods Lagrangian optimization FFT Boltzmann Trans- port Equation Conservative and non-conservative rarefied gas flows.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部