期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats 被引量:1
1
作者 Tiao Lin Wei Tong +11 位作者 Abhishek Chandra Shao-Yun Hsu Haoruo Jia Ji Zhu Wei-Ju Tseng Michael A Levine Yejia Zhang Shi-Gui Yan X Sherry Liu Dongming Sun Wise Young Ling Qin 《Bone Research》 SCIE CAS CSCD 2015年第3期164-172,共9页
Spinal cord injury(SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment.Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To ... Spinal cord injury(SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment.Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae,and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography(m CT), micro-finite element, histology, and serum biochemical analyses.At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI. 展开更多
关键词 SCI BONE A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats
下载PDF
Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
2
作者 Fei Wu Danmou Xing Zhengren Peng Wusheng Kan 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期769-772,共4页
BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and grow... BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats. 展开更多
关键词 VPA Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
下载PDF
Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells
3
作者 张小宁 《外科研究与新技术》 2011年第4期290-290,共1页
Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow m... Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow mesenchymal stem cells ( BMSC ) ,and to investigate the suitable engraftment time. Methods BMSC at 3rd passage were differentiated into neural stem cells ( NSC) , and immunofluorescence staining was used to 展开更多
关键词 BONE Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells stem
下载PDF
Effect of FTY720 on RhoA expression after acute spinal cord injury in rats
4
作者 王求永 《外科研究与新技术》 2011年第2期90-91,共2页
Objective To investigate the effect of fingolimod (FTY720)on RhoA expression after spinal cord injury (SCI)in rats,and explore the possible mechanism of FTY720in the treatment of SCI.Methods A rat model of acute SCI w... Objective To investigate the effect of fingolimod (FTY720)on RhoA expression after spinal cord injury (SCI)in rats,and explore the possible mechanism of FTY720in the treatment of SCI.Methods A rat model of acute SCI was established with a 展开更多
关键词 RHOA FTY Effect of FTY720 on RhoA expression after acute spinal cord injury in rats
下载PDF
Brain-derived neurotrophical factor after olfactory ensheathing cells transplantation in spinal cord injury of rats
5
作者 陈莉发 《外科研究与新技术》 2011年第4期290-291,共2页
Objective To observe the expression of brain - derived neurotrophical factor ( BDNF) in injury spinal cord after transplantation olfactory ensheathing cells ( OECs) , and to investigate the mechanism of OECs repairing... Objective To observe the expression of brain - derived neurotrophical factor ( BDNF) in injury spinal cord after transplantation olfactory ensheathing cells ( OECs) , and to investigate the mechanism of OECs repairing spinal cord injury. Methods OECs from GFP transgenic rats were separated and cultured for transplantation. Spinal cord injury rats were separated two groups by 展开更多
关键词 BDNF GFP Brain-derived neurotrophical factor after olfactory ensheathing cells transplantation in spinal cord injury of rats
下载PDF
Effects of low dose Glibenclamide on secondary damage after acute spinal cord injury in rats
6
作者 李熙 《外科研究与新技术》 2011年第2期87-88,共2页
Objective To investigate the effects of Glibenclamide on reduction of secondary damage after acute spinal cord injury in rats.Methods Ninety rats were randomly divided into control group(laminectomy alone),spinal cord... Objective To investigate the effects of Glibenclamide on reduction of secondary damage after acute spinal cord injury in rats.Methods Ninety rats were randomly divided into control group(laminectomy alone),spinal cord injury group(injury group),and treatment group(treated 展开更多
关键词 Effects of low dose Glibenclamide on secondary damage after acute spinal cord injury in rats
下载PDF
Can muscle-derived stem cells serve as seed cells to repair spinal cord injury? 被引量:1
7
作者 Xifan Mei Chang Liu +5 位作者 Gang Lv Yansong Wang Quanshuang Li Zhanpeng Guo Shiqiong Liu He Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1451-1455,共5页
Muscle-derived stem cells (MDSCs) can come from a number of different sources, which are easy to isolate and culture, and are also useful in the transformation and expression of exogenous genes. Therefore, MDSCs cou... Muscle-derived stem cells (MDSCs) can come from a number of different sources, which are easy to isolate and culture, and are also useful in the transformation and expression of exogenous genes. Therefore, MDSCs could possibly be used for gene therapy in the treatment of neurological diseases. However, research on MDSCs has focused on identifying phenotypes and induced differentiation, with few in vivo animal experiments conducted. In this study, MDSCs were selected as seed cells and implanted into the rat spinal cord injury area. Results demonstrated that the MDSCs survived, migrated, and were distributed along the spinal nerves. Moreover, the motor function of rat lower limbs improved significantly, suggesting that MDSCs could be used as seed cells to repair spinal cord injury. 展开更多
关键词 muscle-derived stem cells green fluorescent protein TRANSPLANTATION spinal cord injury rats
下载PDF
神经干细胞移植治疗脊髓损伤的实验研究 被引量:19
8
作者 吴宗辉 虞乐华 贾功伟 《第四军医大学学报》 北大核心 2009年第4期305-307,共3页
目的:观察神经干细胞(NSCS)移植对脊髓损伤(SCI)大鼠功能恢复的作用.方法:30只Wistar大鼠随机分为对照组、损伤组和移植组,每组10只;损伤组和移植组制作成L4平面的脊髓全横断模型,将培养的大鼠NSCS悬液注入移植组损伤脊髓处,损伤组注射... 目的:观察神经干细胞(NSCS)移植对脊髓损伤(SCI)大鼠功能恢复的作用.方法:30只Wistar大鼠随机分为对照组、损伤组和移植组,每组10只;损伤组和移植组制作成L4平面的脊髓全横断模型,将培养的大鼠NSCS悬液注入移植组损伤脊髓处,损伤组注射等量的生理盐水.术后2 mo,采用BBB评分、皮层体感诱发电位(CSEP)和辣根过氧化物酶(HRP)逆行示踪技术观察大鼠脊髓运动和传导功能的恢复程度.结果:术后2 mo,BBB评分损伤组、移植组大鼠有所恢复,但都未达到正常水平,其中移植组的大鼠恢复较好,评分较高,与损伤组有统计学差异.SCI后,损伤组、移植组的CSEP波消失,术后2 mo移植组的波形有所恢复,但潜伏期延长.对照组脊髓前角可见到许多HRP标记阳性神经元,损伤组未见阳性神经元,移植组可见有阳性神经元,但数目较对照组少.结论:NSCS脊髓内移植能促进损伤脊髓运动和传导功能的部分恢复. 展开更多
关键词 脊髓损伤 干细胞 细胞移植 大鼠
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部