A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(S...The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.展开更多
Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI ...Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI models identified at low and high driving rates separately are incorporated through a combination law. For the piezo- driven flexure-based mechanism, the very low damping ratio makes it easy to excite the structural vibration. As a re- suit, the measured hysteresis loop is greatly distorted and the modeling accuracy of the identified P1 model is signifi- cantly affected. In this paper, a novel time-efficient parameter identification method which utilizes the superimposed sinusoidal signals as the control input is proposed. This method effectively avoids the excitation of the structural vibra- tion. In addition, as the driving rate of the superimposed sinusoidal signals covers a wide range, all the coefficients required for modeling the rate-dependence can be identified through only one set of experimental data. Hysteresis modeling and trajectory tracking experiments were performed on a 2-DOF piezo-driven flexure-based mechanism. The experimental results show that the combined hysteresis model maintains the modeling accuracy over the entire work- ing range of the flexure-based mechanism. The mechanism's hysteresis is significantly suppressed by the use of the inverse PI model as the feedforward controller; and better result is achieved when a feedback loop is also incorporated. The tracking performance of the flexure-based mechanism is greatly improved.展开更多
In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is c...In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.展开更多
The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress chan...The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.展开更多
In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hys...In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hysteresis operators, and the slopes of the operators are considered to be the same. In order to make a hysteresis model, a modified form of non-symmetric play hysteresis operator with unknown slopes is given. The hysteresis model is described by a generalized Lipschitz operator term and a bounded parasitic term. Since the generalized Lipschitz operator is unknown, a new condition using robust right coprime factorization is proposed to guarantee robust stability of the controlled plant with the hysteresis nonlinearity. As a result, based on the proposed robust condition, a stabilized plant is obtained. A numerical example is presented to validate the effectiveness of the proposed method.展开更多
This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity condit...This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion.展开更多
A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. B...A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge-Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems.展开更多
An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis eff...An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.展开更多
Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coe...Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.展开更多
Considering the structural analysis problem of systems properties with Bouc-Wen hysteresis (BWH), various approaches are proposed for the identification of BWH parameters. The applied methods and algorithms are based ...Considering the structural analysis problem of systems properties with Bouc-Wen hysteresis (BWH), various approaches are proposed for the identification of BWH parameters. The applied methods and algorithms are based on the design of parametric models and consider a priori information and the results of data analysis. Structural changes in the BWH form a priori. Methods for the Bouc-Wen model (BWM) identification and its structure estimation are not considered under uncertainty. The study’s purpose is the analysis the structural problems of the Bouc-Wen hysteresis identification. The analysis base is the application of geometric frameworks (GF) under uncertainty. Methods for adaptive estimation parameters and structural of BWM were proposed. The adaptive system stability is proved based on vector Lyapunov functions. An approach is proposed to estimate the identifiability and structure of the system with BWH. The method for estimating the identifiability degree based on the analysis of GF is considered. BWM modifications are proposed to guarantee the system’s stability and simplify its description.展开更多
This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classi...This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classical Prandtl-Ishlinskii (CPI) model can hardly describe the asymmetric hysteresis. To overcome this limitation, various complex operators have been developed to replace the classical operator. In this study, the proposed MRIPI model maintains the classical operator while a modified input function based on the Fermi-Dirac distribution is presented to replace the classical input function. With this method, the MRIPI model can describe the asymmetric hysteresis of magnetostrictive actuators in a relatively simple mathematic format and has fewer parameters to be identified. A velocity-based sine cosine algorithm (VSCA) is also proposed for the parameter identification of the MRIPI model. To verify the validity of the MRIPI model, experiments are performed and the results are compared with those of the existing modeling methods.展开更多
Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney ...Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney disease(CKD)patients admitted to the Second Affiliated Hospital of Harbin Medical University in Harbin and to identify the indexes and lag days that impose the most critical influence.Methods:The R language Distributed Lag Nonlinear Model(DLNM),Excel,and SPSS were used to analyze the disease and meteorological data of Harbin from 01 January 2010 to 31 December 2019 according to the inclusion and exclusion criteria.Results:Meteorological factors and air pollution influence the number of hospitalizations of CKD to vary degrees in cold regions,and differ in persistence or delay.Non-optimal temperature increases the risk of admission of CKD,high temperature increases the risk of obstructive kidney disease,and low temperature increases the risk of other major types of chronic kidney disease.The greater the temperature difference is,the higher its contribution is to the risk.The non-optimal wind speed and non-optimal atmospheric pressure are associated with increased hospital admissions.PM2.5 concentrations above 40μg/m3 have a negative impact on the results.Conclusion:Cold region meteorology and specific environment do have an impact on the number of hospital admissions for chronic kidney disease,and we can apply DLMN to describe the analysis.展开更多
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. ...A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.展开更多
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金supported by National Natural Science Foundation of China(Nos.91016006 and 91116002)Fundamental Research Funds for the Central Universities(Nos.30420111109,30420120305 and SWJTU11ZT06)in part by a PFund from Louisiana Board of Regents
文摘The performance of smart structures in trajectory tracking under sub-micron level is hindered by the rate-dependent hysteresis nonlinearity.In this paper,a Hammerstein-like model based on the support vector machines(SVM)is proposed to capture the rate-dependent hysteresis nonlinearity.We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model.Subsequently,a two-degree-of-freedom(2DOF)H∞robust control scheme for the ratedependent hysteresis nonlinearity is implemented on a smart structure with a piezoelectric actuator(PEA)for real-time precision trajectory tracking.Simulations and experiments on the structure verify both the efectiveness and the practicality of the proposed modeling and control methods.
基金Supported by National Natural Science Foundation of China (No. 51175372)National Key Special Project of Science and Technology of China (No. 2011ZX04016-011)
文摘Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI models identified at low and high driving rates separately are incorporated through a combination law. For the piezo- driven flexure-based mechanism, the very low damping ratio makes it easy to excite the structural vibration. As a re- suit, the measured hysteresis loop is greatly distorted and the modeling accuracy of the identified P1 model is signifi- cantly affected. In this paper, a novel time-efficient parameter identification method which utilizes the superimposed sinusoidal signals as the control input is proposed. This method effectively avoids the excitation of the structural vibra- tion. In addition, as the driving rate of the superimposed sinusoidal signals covers a wide range, all the coefficients required for modeling the rate-dependence can be identified through only one set of experimental data. Hysteresis modeling and trajectory tracking experiments were performed on a 2-DOF piezo-driven flexure-based mechanism. The experimental results show that the combined hysteresis model maintains the modeling accuracy over the entire work- ing range of the flexure-based mechanism. The mechanism's hysteresis is significantly suppressed by the use of the inverse PI model as the feedforward controller; and better result is achieved when a feedback loop is also incorporated. The tracking performance of the flexure-based mechanism is greatly improved.
基金supported by the National Natural Science Foundation of China(61203229)
文摘In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.
基金supported by grants 09-05-00014-a, and 08-05-90201-Mong_a from the Russian Foundation for Basic Research
文摘The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.
文摘In this paper, robust stability of nonlinear plants represented by non-symmetric Prandtl-Ishlinskii (PI) hysteresis model is studied. In general, PI hysteresis model is the weighted superposition of play or stop hysteresis operators, and the slopes of the operators are considered to be the same. In order to make a hysteresis model, a modified form of non-symmetric play hysteresis operator with unknown slopes is given. The hysteresis model is described by a generalized Lipschitz operator term and a bounded parasitic term. Since the generalized Lipschitz operator is unknown, a new condition using robust right coprime factorization is proposed to guarantee robust stability of the controlled plant with the hysteresis nonlinearity. As a result, based on the proposed robust condition, a stabilized plant is obtained. A numerical example is presented to validate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60821063 and 61034005)National Basic Research Program of China (Grant No. 2009CB32060)
文摘This paper concerns the absolute stability problem of discrete-time descriptor systems with feedback connected ferromagnetic hysteresis nonlinearities. The ferromagnetic hysteresis model satisfies the passivity conditions of hysteresis operator, that is the input-output relation of the transformed operator is passive. The bound condition of the solution of the ferromagnetic hysteresis model is given. Through the framework of loop transformation, an augmented discrete-time descriptor system model is established for the stability analysis. A new extended Tsypkin criterion for the absolute stability of discrete-time descriptor systems with hysteresis is presented based on the linear matrix inequalities technique. A numerical example is given to illustrate the effectiveness of the extended criterion.
基金supported by the Key Project(11132001)the General Projects of Natural Science Foundation of China(11072146,11272202,and 11002087)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20110073110008)
文摘A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge-Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems.
基金Supported by the National High Technology Research and Development Programme of China(No.2008AA11A143)
文摘An empirical hybrid shock absorber model capable of capturing nonlinear and hysteresis characteristics of shock absorbers is built.The nonlinear characteristics are modeled by algebraic function and the hysteresis effects between shock force and shock velocity are modeled by neural network.To develop the empirical hybrid shock absorber model,a Mazda CX-7 front shock absorber is tested by a displacement-controlled hydraulic shock absorber testing machine.The hybrid shock absorber model is built and validated using the experimental shock absorber data.The RMS value for the hybrid shock absorber model is 60.28N at the velocity range from-1.3m/s to 1.3m/s.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2017M010660)the Major Project of the Inner Mongolia Autonomous Region,China(Grant No.2018ZD10).
文摘Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.
文摘Considering the structural analysis problem of systems properties with Bouc-Wen hysteresis (BWH), various approaches are proposed for the identification of BWH parameters. The applied methods and algorithms are based on the design of parametric models and consider a priori information and the results of data analysis. Structural changes in the BWH form a priori. Methods for the Bouc-Wen model (BWM) identification and its structure estimation are not considered under uncertainty. The study’s purpose is the analysis the structural problems of the Bouc-Wen hysteresis identification. The analysis base is the application of geometric frameworks (GF) under uncertainty. Methods for adaptive estimation parameters and structural of BWM were proposed. The adaptive system stability is proved based on vector Lyapunov functions. An approach is proposed to estimate the identifiability and structure of the system with BWH. The method for estimating the identifiability degree based on the analysis of GF is considered. BWM modifications are proposed to guarantee the system’s stability and simplify its description.
文摘This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classical Prandtl-Ishlinskii (CPI) model can hardly describe the asymmetric hysteresis. To overcome this limitation, various complex operators have been developed to replace the classical operator. In this study, the proposed MRIPI model maintains the classical operator while a modified input function based on the Fermi-Dirac distribution is presented to replace the classical input function. With this method, the MRIPI model can describe the asymmetric hysteresis of magnetostrictive actuators in a relatively simple mathematic format and has fewer parameters to be identified. A velocity-based sine cosine algorithm (VSCA) is also proposed for the parameter identification of the MRIPI model. To verify the validity of the MRIPI model, experiments are performed and the results are compared with those of the existing modeling methods.
文摘Objective:To explore the effects of daily mean temperature(°C),average daily air pressure(hPa),humidity(%),wind speed(m/s),particulate matter(PM)2.5(μg/m3)and PM10(μg/m3)on the admission rate of chronic kidney disease(CKD)patients admitted to the Second Affiliated Hospital of Harbin Medical University in Harbin and to identify the indexes and lag days that impose the most critical influence.Methods:The R language Distributed Lag Nonlinear Model(DLNM),Excel,and SPSS were used to analyze the disease and meteorological data of Harbin from 01 January 2010 to 31 December 2019 according to the inclusion and exclusion criteria.Results:Meteorological factors and air pollution influence the number of hospitalizations of CKD to vary degrees in cold regions,and differ in persistence or delay.Non-optimal temperature increases the risk of admission of CKD,high temperature increases the risk of obstructive kidney disease,and low temperature increases the risk of other major types of chronic kidney disease.The greater the temperature difference is,the higher its contribution is to the risk.The non-optimal wind speed and non-optimal atmospheric pressure are associated with increased hospital admissions.PM2.5 concentrations above 40μg/m3 have a negative impact on the results.Conclusion:Cold region meteorology and specific environment do have an impact on the number of hospital admissions for chronic kidney disease,and we can apply DLMN to describe the analysis.
基金Supported by the National Natural Science Foundation of China (Grant No. 60534020)the National Basic Research Program of China (GrantNo. G2002cb312205-04)+1 种基金the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070006060)the Key Subject Foundation of Beijing (Grant Nos. XK100060526, XK100060422)
文摘A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The approach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the experiment result, the model built can well describe the hysteresis nonlinear of the actuator for input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.