Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea...Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the fo...We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The ...A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.展开更多
The bidding strategies of power suppliers to maximize their interests is of great importance.The proposed bilevel optimization model with coalitions of power suppliers takes restraint factors into consideration,such a...The bidding strategies of power suppliers to maximize their interests is of great importance.The proposed bilevel optimization model with coalitions of power suppliers takes restraint factors into consideration,such as operating cost reduction,potential cooperation,other competitors’bidding behavior,and network constraints.The upper model describes the coalition relationship between suppliers,and the lower model represents the independent system operator’s optimization without network loss(WNL)or considering network loss(CNL).Then,a novel algorithm,the evolutionary game theory algorithm(EGA)based on a hybrid particle swarm optimization and improved firefly algorithm(HPSOIFA),is proposed to solve the bi-level optimization model.The bidding behavior of the power suppliers in equilibrium with a dynamic power market is encoded as one species,with the EGA automatically predicting a plausible adaptation process for the others.Individual behavior changes are employed by the HPSOIFA to enhance the ability of global exploration and local exploitation.A novel improved firefly algorithm(IFA)is combined with a chaotic sequence theory to escape from the local optimum.In addition,the Shapley value is applied to the profit distribution of power suppliers’cooperation.The simulation,adopting the standard IEEE-30 bus system,demonstrates the effectiveness of the proposed method for solving the bi-level optimization problem.展开更多
Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other m...Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.展开更多
Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers bu...Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers but also from dynamic variation of available bandwidth, brings forward great challenge to video streaming. To attack this problem, an adaptive scheme based on rate-distortion optimization (RDO) is proposed in this paper. While low complexity RDO based frame dropping is exploited to shape bitrate into available bandwidth in peers, the streamed bitstream is dynamically switched among multiple available versions in an RDO way by the streaming server. Simulation results show that the proposed scheme based on RDO achieves great gain in overall perceived quality over simple heuristic schemes.展开更多
In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajector...In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajectory economically and safely.Based on this,a multi-objective optimization model of deviationcorrection trajectory is established considering the production loss evaluation.Firstly,the functional relationship between the production envelope and the fracturing depth is constructed,and the production loss is obtained by combining the calculation method of volume flow.Based on the proposed“double-arc”trajectory design method,the production loss of the fracture on the deviation-correction trajectory is obtained.Finally,combined with the well profile energy evaluation,a new optimization model of deviation-correction trajectory is established.The results demonstrate that after optimizing the fracturing depth,the production loss of the deviation-correction trajectory is reduced by 13.2%.The maximum curvature value results in a trajectory with a minimum production loss yet a maximum well profile energy.The proposed model reduces the well profile energy by 15.6%compared with the existing model.It is proved that the proposed model can reduce the probability of drilling accidents and achieve high gas production in the later mining stage.This study fully considers various factors affecting horizontal wells in the fracturing area,which can provide theoretical guidance for the design of deviationcorrection trajectory.展开更多
To enable quality sealability and further improve the reconstructed video quallty m rate shaping, a rate-distortion optimized packet dropping scheme for H. 264 data partitioned video bitstream is proposed in this pape...To enable quality sealability and further improve the reconstructed video quallty m rate shaping, a rate-distortion optimized packet dropping scheme for H. 264 data partitioned video bitstream is proposed in this paper. Some side information is generated for each video bitstream in advance, while streaming such side information is exploited by a greedy algorithm to optimally drop partitions in a rate-distortion optimized way. Quality sealability is supported by adopting data partition instead of whole frame as the dropping unit. Simulation resuhs show that the proposed scheme achieves a great gain in the reconstructed video quality over two typical frame dropping schemes, with the help of the fine granularity in dropping unit as well as rate-distortion optimization.展开更多
The optimization of the acoustic silencer volume is very important to develop it and to get high-performance,the importance of the silencer was appeared in industrial field to eliminate the noise of the duct by effici...The optimization of the acoustic silencer volume is very important to develop it and to get high-performance,the importance of the silencer was appeared in industrial field to eliminate the noise of the duct by efficient and economical method.The main goal of this research is to optimize the transmission loss(TL)by analytical method of the Double-Chamber Silencer(DCS),the TL has been selected as the main parameter in silencer because it does not based on the source or the termination impedances.First we calculated the power transmission coefficient(PTC)and the TL of an acoustic silencer,then used the Lagrange method to optimize the silencer length.All calculation of silencer data is obtained by solving the governing equations in commercial software Matlab®.A several calculations for different silencer length at many frequency ranges were performed simultaneously.Finally,this research supports the efficient and rapid techniques for DCS optimal design under narrow space.The results show that the acoustic TL is maximized at the desired frequency.展开更多
This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading ang...This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading angles have been further developed.A correction factor is proposed to consider the nonlinear effect due to large waves in power estimation.The formulas are developed and verified by model tests of 5 ships in regular waves with various heading angles.The full-scale measurements from three different types of ships,i.e.,a PCTC,a container ship,and a chemical tanker,are used to validate the proposed model for speed loss prediction in irregular waves.The effect of the improved model for speed loss prediction on a ship’s voyage optimization is also investigated.The results indicate that a ship’s voyage optimization solutions can be significantly affected by the prediction accuracy of speed loss caused by waves.展开更多
Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated wi...Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated with unpredictable behavior, potentially leading to loss of the aircraft and life. In this work, the minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle (PMP). The resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE). The minimum time until LOC metric is computed for corresponding spatial control limits. Simulations are performed using a linearized longitudinal aircraft model to illustrate the concept.展开更多
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar...The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.展开更多
Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity str...Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.展开更多
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and...Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.展开更多
Response surface methodology was used to investigate the effect of brine concentration (10% - 20%) solution temperature (35℃ - 55℃), and duration of osmosis (30 - 60 min) with respect to water loss (WL) and salt gai...Response surface methodology was used to investigate the effect of brine concentration (10% - 20%) solution temperature (35℃ - 55℃), and duration of osmosis (30 - 60 min) with respect to water loss (WL) and salt gain (SG). The solu- tion to sample ratio of 5/1 (w/w) was used. The Box-Behnken design of three variables and three levels including seventeen experiments formed by five central points were used for optimizing input parameters. Linear, quadratic and interaction effects of three variables were analyzed with respect to water loss and solid gain. For each response, second order polynomial models were developed using multiple regression analysis. Analysis of variance (ANOVA) was per- formed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. The optimum operating conditions were: solution temperature 44.89℃, brine concentration of 16.53 per cent and duration of osmosis of 47.59 min. At this optimum point, water loss and salt gain were predicted to be 44.55 per cent and 2.98 percent respectively.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094).
文摘Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金Project (No. STE1093/1-1) supported by the German ResearchFoundation, Germany
文摘We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金Project(2010CB630800) supported by the National Basic Research Program of China
文摘A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.
文摘The bidding strategies of power suppliers to maximize their interests is of great importance.The proposed bilevel optimization model with coalitions of power suppliers takes restraint factors into consideration,such as operating cost reduction,potential cooperation,other competitors’bidding behavior,and network constraints.The upper model describes the coalition relationship between suppliers,and the lower model represents the independent system operator’s optimization without network loss(WNL)or considering network loss(CNL).Then,a novel algorithm,the evolutionary game theory algorithm(EGA)based on a hybrid particle swarm optimization and improved firefly algorithm(HPSOIFA),is proposed to solve the bi-level optimization model.The bidding behavior of the power suppliers in equilibrium with a dynamic power market is encoded as one species,with the EGA automatically predicting a plausible adaptation process for the others.Individual behavior changes are employed by the HPSOIFA to enhance the ability of global exploration and local exploitation.A novel improved firefly algorithm(IFA)is combined with a chaotic sequence theory to escape from the local optimum.In addition,the Shapley value is applied to the profit distribution of power suppliers’cooperation.The simulation,adopting the standard IEEE-30 bus system,demonstrates the effectiveness of the proposed method for solving the bi-level optimization problem.
基金supported by Defense Industrial Technology Development Program of China (Grant No. A2520110003)
文摘Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.
文摘Peer-to-peer (P2P) technology provides a cost-effective and scalable way to distribute video data. However, high heterogeneity of the P2P network, which rises not only from heterogeneous link capacity between peers but also from dynamic variation of available bandwidth, brings forward great challenge to video streaming. To attack this problem, an adaptive scheme based on rate-distortion optimization (RDO) is proposed in this paper. While low complexity RDO based frame dropping is exploited to shape bitrate into available bandwidth in peers, the streamed bitstream is dynamically switched among multiple available versions in an RDO way by the streaming server. Simulation results show that the proposed scheme based on RDO achieves great gain in overall perceived quality over simple heuristic schemes.
基金financial support from the Natural Science Foundation of China(No.42002307)Fundamental Research Funds for the Central Universities(No.2652019070)National Key Research and Development Program of China(No.2018YFC0603405)
文摘In shale gas mining,the inter-fracture interference effect will significantly occur if the actual well deviates from the planned trajectory.To reduce production loss,operators want to get back on the planned trajectory economically and safely.Based on this,a multi-objective optimization model of deviationcorrection trajectory is established considering the production loss evaluation.Firstly,the functional relationship between the production envelope and the fracturing depth is constructed,and the production loss is obtained by combining the calculation method of volume flow.Based on the proposed“double-arc”trajectory design method,the production loss of the fracture on the deviation-correction trajectory is obtained.Finally,combined with the well profile energy evaluation,a new optimization model of deviation-correction trajectory is established.The results demonstrate that after optimizing the fracturing depth,the production loss of the deviation-correction trajectory is reduced by 13.2%.The maximum curvature value results in a trajectory with a minimum production loss yet a maximum well profile energy.The proposed model reduces the well profile energy by 15.6%compared with the existing model.It is proved that the proposed model can reduce the probability of drilling accidents and achieve high gas production in the later mining stage.This study fully considers various factors affecting horizontal wells in the fracturing area,which can provide theoretical guidance for the design of deviationcorrection trajectory.
基金Supported by the National Natural Science Foundation of China ( No. 60702031 )the National High Technology Research and Development Programme of China (No. 2008AA01Z217A)
文摘To enable quality sealability and further improve the reconstructed video quallty m rate shaping, a rate-distortion optimized packet dropping scheme for H. 264 data partitioned video bitstream is proposed in this paper. Some side information is generated for each video bitstream in advance, while streaming such side information is exploited by a greedy algorithm to optimally drop partitions in a rate-distortion optimized way. Quality sealability is supported by adopting data partition instead of whole frame as the dropping unit. Simulation resuhs show that the proposed scheme achieves a great gain in the reconstructed video quality over two typical frame dropping schemes, with the help of the fine granularity in dropping unit as well as rate-distortion optimization.
文摘The optimization of the acoustic silencer volume is very important to develop it and to get high-performance,the importance of the silencer was appeared in industrial field to eliminate the noise of the duct by efficient and economical method.The main goal of this research is to optimize the transmission loss(TL)by analytical method of the Double-Chamber Silencer(DCS),the TL has been selected as the main parameter in silencer because it does not based on the source or the termination impedances.First we calculated the power transmission coefficient(PTC)and the TL of an acoustic silencer,then used the Lagrange method to optimize the silencer length.All calculation of silencer data is obtained by solving the governing equations in commercial software Matlab®.A several calculations for different silencer length at many frequency ranges were performed simultaneously.Finally,this research supports the efficient and rapid techniques for DCS optimal design under narrow space.The results show that the acoustic TL is maximized at the desired frequency.
基金Open access funding provided by Chalmers University of Technology.The authors acknowledge the financial support from the European Commission(Horizon 2020)project EcoSail(Grant Number 820593)We are also grateful to the support from the Swedish Foundation for International Cooperation in Research and Higher Education(CH2016-6673)+1 种基金National Natural Science Foundation of China(NSFC-51779202)The second author thanks the funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie(Grant Number 754412)and VGR MoRE2020.
文摘This paper proposes a semi-empirical model to predict a ship’s speed loss at arbitrary wave heading.In the model,the formulas that estimate a ship’s added resistance due to waves attacking from different heading angles have been further developed.A correction factor is proposed to consider the nonlinear effect due to large waves in power estimation.The formulas are developed and verified by model tests of 5 ships in regular waves with various heading angles.The full-scale measurements from three different types of ships,i.e.,a PCTC,a container ship,and a chemical tanker,are used to validate the proposed model for speed loss prediction in irregular waves.The effect of the improved model for speed loss prediction on a ship’s voyage optimization is also investigated.The results indicate that a ship’s voyage optimization solutions can be significantly affected by the prediction accuracy of speed loss caused by waves.
文摘Loss of Control (LOC) is the primary factor responsible for the majority of fatal air accidents during past decade. LOC is characterized by the pilot’s inability to control the aircraft and is typically associated with unpredictable behavior, potentially leading to loss of the aircraft and life. In this work, the minimum time dynamic optimization problem to LOC is treated using Pontryagin’s Maximum Principle (PMP). The resulting two point boundary value problem is solved using stochastic shooting point methods via a differential evolution scheme (DE). The minimum time until LOC metric is computed for corresponding spatial control limits. Simulations are performed using a linearized longitudinal aircraft model to illustrate the concept.
文摘The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method.
基金supported by the National Natural Science Foundation of China(No.51775273)the Jiangsu Province Science and Technology Support Plan Project(No.BE2018010-2)+2 种基金the National Defence Basic Scientific Research Program of China(No.JCKY2018605C010)the Frontiers of Science and Technology Program of China (No.1816312ZT00406301)the Aeronautical Science Foundation of China(No.2020Z049052002)
文摘Hydraulic valve block is an important part of the hydraulic system.The traditional hydraulic valve block is made by turning and milling,drilling and boring,which leads to many right-angle bending and closed cavity structure of process holes in its internal flow channel,seriously affecting the flow performance of oil.Based on the new design space provided by additive manufacturing technology,the internal hydraulic flow channel of valve block is optimized by using B-spline curve.Computational fluid dynamics analysis is carried out on the hydraulic flow channel to determine the optimal flow channel structure with the smallest pressure drop.The weight reduction of hydraulic valve block is carried out through topology optimization.According to the results of topology optimization,using the method of selective laser melting(SLM),the printing of the hydraulic valve block is completed.The optimized hydraulic channel reduces the pressure loss by 31.4%compared with the traditional hydraulic channel.Compared with the traditional valve block,the hydraulic valve block manufactured by SLM with topology optimization reduces the weight by 33.9%.Therefore,the proposed flow channel optimization and valve block lightweight method provide a new reference for the performance improvement of the internal flow channel of hydraulic valve block and the overall lightweight design of valve block.
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.
文摘Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.
文摘Response surface methodology was used to investigate the effect of brine concentration (10% - 20%) solution temperature (35℃ - 55℃), and duration of osmosis (30 - 60 min) with respect to water loss (WL) and salt gain (SG). The solu- tion to sample ratio of 5/1 (w/w) was used. The Box-Behnken design of three variables and three levels including seventeen experiments formed by five central points were used for optimizing input parameters. Linear, quadratic and interaction effects of three variables were analyzed with respect to water loss and solid gain. For each response, second order polynomial models were developed using multiple regression analysis. Analysis of variance (ANOVA) was per- formed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. The optimum operating conditions were: solution temperature 44.89℃, brine concentration of 16.53 per cent and duration of osmosis of 47.59 min. At this optimum point, water loss and salt gain were predicted to be 44.55 per cent and 2.98 percent respectively.