Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degrad...Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.展开更多
Objective: This study investigated the inter- and intra-rater reliability of the Australian Spasticity Assessment Scale (ASAS) in adults with unilateral hypertonia following acquired brain injury. The ASAS has been sh...Objective: This study investigated the inter- and intra-rater reliability of the Australian Spasticity Assessment Scale (ASAS) in adults with unilateral hypertonia following acquired brain injury. The ASAS has been shown to be superior to other clinical tools for the assessment of spasticity in children with cerebral palsy but reliability has not been previously examined in adults. Method: Four muscle groups were rated on one occasion by four assessors using the ASAS in sixteen adults with unilateral hypertonia following acquired brain injury. Twelve participants returned one week later for reassessment by the same assessors. Results: Overall inter-rater reliability of the ASAS using a quadratic weighted Kappa was moderate (Kqw 0.58) with ranges from moderate to good (Kqw 0.42 - 0.70). Agreement between raters was greatest for soleus muscle and least for wrist flexors. Overall intra-rater reliability of each of the four raters was moderate to good (Kqw 0.48 - 0.79). Agreement within raters was greatest for soleus muscle and least for biceps muscle. Conclusions: The ASAS may represent an appropriate alternative to the clinical scales currently used to assess spasticity;however inter and intra-rater reliability data from this investigation are lower than those which have previously been reported by experienced users of the ASAS in children with cerebral palsy. Further investigation with a larger sample size is warranted before any firm conclusions may be drawn about the reliability and validity of this tool to assess spasticity in adults with acquired brain injury.展开更多
Objective and accurate assessment of the degree of ocular motor nerve palsy is helpful not only in the evaluation of prognosis, but also for the screening of treatment methods. However, there is currently no comprehen...Objective and accurate assessment of the degree of ocular motor nerve palsy is helpful not only in the evaluation of prognosis, but also for the screening of treatment methods. However, there is currently no comprehensive measure of its severity. In this study, we designed the Ocular Motor Nerve Palsy Scale and investigated its validity and reliability. Six experts were invited to grade and evaluate the scale. The study recruited 106 patients with a definite diagnosis of unilateral isolated ocular motor nerve palsy. Three physicians evaluated the patients using the scale. One of the three physicians evaluated the patients again after 24 hours. The content validity index(CVI) and factor analysis were used to analyze the scale's construct validity. The intraclass correlation coefficient and Cronbach's alpha were used to evaluate the inter-rater and test-retest reliability and the internal consistency. The CVI results(I-CVI = 1.0, S-CVI = 0.9, Pc = 0.016, K* = 1) indicated good content validity. Factor analysis extracted two common factors that accounted for 85.2% of the variance. Furthermore, the load value of each component was above 0.8, indicating good construct validity. The Ocular Motor Nerve Palsy Scale was found to be highly reliable, with an inter-rater reliability intraclass correlation coefficient of 0.965(P 0.01), a test-retest reliability intraclass correlation coefficient of 0.976(P 0.01), and Cronbach's alpha values of 0.63–0.70. In conclusion, the Ocular Motor Nerve Palsy Scale with good validity and reliability can be used to quantify the severity of ocular motor nerve palsy. This study was registered at Chinese Clinical Trial Registry(registration number: Chi CTR-OOC-17010702).展开更多
A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter cha...A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of the S-N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.展开更多
The bane of achieving a scalable distributed file sharing system is the centralized data system and single server oriented file [sharing] system. In this paper, the solution to the problems in a distributed environmen...The bane of achieving a scalable distributed file sharing system is the centralized data system and single server oriented file [sharing] system. In this paper, the solution to the problems in a distributed environment is presented. Thus, inability to upload sizeable files, slow transportation of files, weak security and lack of fault tolerance are the major problems in the existing system. Hence, the utmost need is to build a client-server network that runs on two or more server systems in order to implement scalability, such that when one server is down, the other(s) would still hold up the activities within the network. And to achieve this reliable network environment, LINUX network operating system is recommended among others as a preferred platform for the synchronization of the server systems, such that every user activity like sending of internal memos/mails, publication of academic articles, is replicated;thereby, achieving the proposed result. Hence, Scalable Distributed File Sharing System provides the robustness required to having a reliable intranet.展开更多
The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance de...The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance depend heavily on the assumption of normality, which may not be tenable in practice. Expressions for the bias and variance of the reliability coefficient in the one and two way random effects models using the multivariate Taylor’s expansion have been obtained under the assumption of normality of the score (Atenafu et al. [1]). In the present paper we derive analytic expressions for the bias and variance, hence the mean square error when the measured responses are not normal under the one-way data layout. Similar expressions are derived in the case of the two-way data layout. We assess the effect of departure from normality on the sample size requirements and on the power of Wald’s test on specified hypotheses. We analyze two data sets, and draw comparisons with results obtained via the Bootstrap methods. It was found that the estimated bias and variance based on the bootstrap method are quite close to those obtained by the first order approximation using the Taylor’s expansion. This is an indication that for the given data sets the approximations are quite adequate.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2018JJ2282)
文摘Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.
文摘Objective: This study investigated the inter- and intra-rater reliability of the Australian Spasticity Assessment Scale (ASAS) in adults with unilateral hypertonia following acquired brain injury. The ASAS has been shown to be superior to other clinical tools for the assessment of spasticity in children with cerebral palsy but reliability has not been previously examined in adults. Method: Four muscle groups were rated on one occasion by four assessors using the ASAS in sixteen adults with unilateral hypertonia following acquired brain injury. Twelve participants returned one week later for reassessment by the same assessors. Results: Overall inter-rater reliability of the ASAS using a quadratic weighted Kappa was moderate (Kqw 0.58) with ranges from moderate to good (Kqw 0.42 - 0.70). Agreement between raters was greatest for soleus muscle and least for wrist flexors. Overall intra-rater reliability of each of the four raters was moderate to good (Kqw 0.48 - 0.79). Agreement within raters was greatest for soleus muscle and least for biceps muscle. Conclusions: The ASAS may represent an appropriate alternative to the clinical scales currently used to assess spasticity;however inter and intra-rater reliability data from this investigation are lower than those which have previously been reported by experienced users of the ASAS in children with cerebral palsy. Further investigation with a larger sample size is warranted before any firm conclusions may be drawn about the reliability and validity of this tool to assess spasticity in adults with acquired brain injury.
基金supported by the National Natural Science Foundation of China,No.81674052
文摘Objective and accurate assessment of the degree of ocular motor nerve palsy is helpful not only in the evaluation of prognosis, but also for the screening of treatment methods. However, there is currently no comprehensive measure of its severity. In this study, we designed the Ocular Motor Nerve Palsy Scale and investigated its validity and reliability. Six experts were invited to grade and evaluate the scale. The study recruited 106 patients with a definite diagnosis of unilateral isolated ocular motor nerve palsy. Three physicians evaluated the patients using the scale. One of the three physicians evaluated the patients again after 24 hours. The content validity index(CVI) and factor analysis were used to analyze the scale's construct validity. The intraclass correlation coefficient and Cronbach's alpha were used to evaluate the inter-rater and test-retest reliability and the internal consistency. The CVI results(I-CVI = 1.0, S-CVI = 0.9, Pc = 0.016, K* = 1) indicated good content validity. Factor analysis extracted two common factors that accounted for 85.2% of the variance. Furthermore, the load value of each component was above 0.8, indicating good construct validity. The Ocular Motor Nerve Palsy Scale was found to be highly reliable, with an inter-rater reliability intraclass correlation coefficient of 0.965(P 0.01), a test-retest reliability intraclass correlation coefficient of 0.976(P 0.01), and Cronbach's alpha values of 0.63–0.70. In conclusion, the Ocular Motor Nerve Palsy Scale with good validity and reliability can be used to quantify the severity of ocular motor nerve palsy. This study was registered at Chinese Clinical Trial Registry(registration number: Chi CTR-OOC-17010702).
基金Projects(51178042,51578047)supported by the National Natural Science Foundation of ChinaProject(C14JB00340)supported by the Innovative Research Fund in Beijing Jiaotong University,ChinaProject(2014-ZJKJ-03)supported by Science and Technology Research and Development Fund of the China Communications Construction Co.,LTD
文摘A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of the S-N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.
文摘The bane of achieving a scalable distributed file sharing system is the centralized data system and single server oriented file [sharing] system. In this paper, the solution to the problems in a distributed environment is presented. Thus, inability to upload sizeable files, slow transportation of files, weak security and lack of fault tolerance are the major problems in the existing system. Hence, the utmost need is to build a client-server network that runs on two or more server systems in order to implement scalability, such that when one server is down, the other(s) would still hold up the activities within the network. And to achieve this reliable network environment, LINUX network operating system is recommended among others as a preferred platform for the synchronization of the server systems, such that every user activity like sending of internal memos/mails, publication of academic articles, is replicated;thereby, achieving the proposed result. Hence, Scalable Distributed File Sharing System provides the robustness required to having a reliable intranet.
文摘The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance depend heavily on the assumption of normality, which may not be tenable in practice. Expressions for the bias and variance of the reliability coefficient in the one and two way random effects models using the multivariate Taylor’s expansion have been obtained under the assumption of normality of the score (Atenafu et al. [1]). In the present paper we derive analytic expressions for the bias and variance, hence the mean square error when the measured responses are not normal under the one-way data layout. Similar expressions are derived in the case of the two-way data layout. We assess the effect of departure from normality on the sample size requirements and on the power of Wald’s test on specified hypotheses. We analyze two data sets, and draw comparisons with results obtained via the Bootstrap methods. It was found that the estimated bias and variance based on the bootstrap method are quite close to those obtained by the first order approximation using the Taylor’s expansion. This is an indication that for the given data sets the approximations are quite adequate.