针对当前不同的非白噪声背景研究很少,根据噪音、语音和音乐的性质并且结合统计学理论,提出一种在不同噪声背景下低信噪比的语音/音乐分割算法。以往的检测算法很少考虑低信噪比的环境,首先从音频数据中提取新的特征参数概率密度比(prob...针对当前不同的非白噪声背景研究很少,根据噪音、语音和音乐的性质并且结合统计学理论,提出一种在不同噪声背景下低信噪比的语音/音乐分割算法。以往的检测算法很少考虑低信噪比的环境,首先从音频数据中提取新的特征参数概率密度比(probability density ratio,PR)和概率密度比过零率(probability density ratio crossing rate,PRCR),特征参数在低信噪比环境下亦能明显表征语音和音乐的不同特性,然后根据音频的特性对PRCR进行修正,再基于此修正的特征参数对语音和音乐进行改变点检测,最后得到分割结果。实验结果显示,在信噪比达到5dB时分割点准确率达到85%以上,具有良好的鲁棒性。展开更多
A recent review publication presented an extensive and comprehensive assessment of the phenomenological relations of Poisson’s ratios (PRs) to the behavior and responses of contemporary materials under specific loadi...A recent review publication presented an extensive and comprehensive assessment of the phenomenological relations of Poisson’s ratios (PRs) to the behavior and responses of contemporary materials under specific loading conditions. The present review and analysis paper is intended as a theoretical mechanics complement covering mathematical and physical modeling of a single original elastic and of six time and process (i.e. path and stress) dependent viscoelastic PR definitions as well as a seventh special path independent one. The implications and consequences of such models on material characterization are analyzed and summarized. Indeed, PRs based on experimentally obtained 2-D strains under distinct creep and/or relaxation processes exhibit radically different time responses for identical material specimen. These results confirm the PR’s implicit path dependence in addition to their separate intrinsic time reliance. Such non-uniqueness of viscoelastic PRs renders them unsuitable as universal material descriptors. Analytical formulations and experimental measurements also examine the physical impossibility of instantaneously achieving time independent loads or strains or their rates thus making certain PR definitions based on constant state variables, while mathematically valid, physically unrealistic and unachievable. A newly developed theoretical/experimental protocol for the determination of the time when loading patterns reach stead-state conditions based on strain accelerations demonstrates the capability to measure this time from experimental data. Due to the process dependent PRs, i.e. stress and stress history paths, the non-existence of a unique viscoelastic PR and of a universal elastic-viscoelastic correspondence principle or analogy (EVCP) in terms of PRs is demonstrated. Additionally and independently, the required double convolution integral construction of linear viscoelastic constitutive relations with the inclusion of PRs is cumbersome analytically and computationally needlessly highly CPU intensive. Furthermore, there is no theoretical fundamental hint as to what loading path is required to produce a unique universal viscoelastic PR definition necessary for formulating a PR based constitutive relation or an EVCP protocol. The analysis associated with an additional Class VII viscoelastic PR establishes it as a universal representation which is loading path and strain independent while still remaining time dependent. This Class PR can be the one used if it is desired to express constitutive relations in terms of PRs, subject to the caveat applying to all PR Classes regarding the CPU intensiveness in the time space due to triple product and double convolution integral constitutive relations. However, the use PRs is unnecessary since any set of material behavior can be uniquely and completely defined in terms of only moduli and/or compliances. The mathematical model of instantaneous initial loading paths, based on Heavi-side functions, is examined in detail and shown to lead to infinite velocities and accelerations. Additionally, even if non-instantaneous gradual loading functions are employed the resulting PRs are still load and load history dependent. Consequently, they represent specialized PR responses applicable and limited to those particular load and history combinations. Although the analyses contained herein are generalized to non-homogeneous linear viscoelastic materials, the main focus is on PR time and process dependence. The non-homogeneous material results and conclusions presented herein apply equally to homogeneous viscoelasticity and per se do not influence the results or conclusions of the analytical development regarding viscoelastic PRs. In short, these PR analyses apply to all linear viscoelastic material characterization.展开更多
Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called informat...Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called information subcarrier. OFDM exhibits excellent annotation in channel fades and interferers as only a few subcarriers can be affected and consequently a small part of the original data stream can be lost. Orthogonality between frequencies ensures better spectrum management and obviates the danger of intersymbol interference. However, an essential problem exists. OFDM systems have high peak to average power ratio. This implies large fluctuations in signal power, ending up in increasing complexity of ADCs and DACs. Also, power amplifiers must work in a larger linear dynamic region. In this paper we present two new techniques for reducing Peak to Average Power Ratio (PAPR), that can be added in any OFDM system and we compare them with other existing schemes.展开更多
Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rai...Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rainwater q <SUB>r</SUB> is obtained from the R −q <SUB>r</SUB> relation (R is the rainfall rate), and the mixing ratio of water vapor q <SUB>v</SUB> in the model is replaced by q <SUP>1</SUP>′<SUB>v</SUB> = q <SUB>v</SUB>+q <SUB>r</SUB>. Then, TRMM/PR data are used to modify humidity analysis obtained from conventional radiosonde data, and sensitivity experiments (STE) are performed and compared to control experiments (CTL). Results show that both the heavy rainfall distribution and its maximum amounts from STE are improved compared with those from CTL.展开更多
Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not b...Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.展开更多
基金supported by the National Natural Science Foundation of China(51568068)the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(202105AC160054).
文摘针对当前不同的非白噪声背景研究很少,根据噪音、语音和音乐的性质并且结合统计学理论,提出一种在不同噪声背景下低信噪比的语音/音乐分割算法。以往的检测算法很少考虑低信噪比的环境,首先从音频数据中提取新的特征参数概率密度比(probability density ratio,PR)和概率密度比过零率(probability density ratio crossing rate,PRCR),特征参数在低信噪比环境下亦能明显表征语音和音乐的不同特性,然后根据音频的特性对PRCR进行修正,再基于此修正的特征参数对语音和音乐进行改变点检测,最后得到分割结果。实验结果显示,在信噪比达到5dB时分割点准确率达到85%以上,具有良好的鲁棒性。
文摘A recent review publication presented an extensive and comprehensive assessment of the phenomenological relations of Poisson’s ratios (PRs) to the behavior and responses of contemporary materials under specific loading conditions. The present review and analysis paper is intended as a theoretical mechanics complement covering mathematical and physical modeling of a single original elastic and of six time and process (i.e. path and stress) dependent viscoelastic PR definitions as well as a seventh special path independent one. The implications and consequences of such models on material characterization are analyzed and summarized. Indeed, PRs based on experimentally obtained 2-D strains under distinct creep and/or relaxation processes exhibit radically different time responses for identical material specimen. These results confirm the PR’s implicit path dependence in addition to their separate intrinsic time reliance. Such non-uniqueness of viscoelastic PRs renders them unsuitable as universal material descriptors. Analytical formulations and experimental measurements also examine the physical impossibility of instantaneously achieving time independent loads or strains or their rates thus making certain PR definitions based on constant state variables, while mathematically valid, physically unrealistic and unachievable. A newly developed theoretical/experimental protocol for the determination of the time when loading patterns reach stead-state conditions based on strain accelerations demonstrates the capability to measure this time from experimental data. Due to the process dependent PRs, i.e. stress and stress history paths, the non-existence of a unique viscoelastic PR and of a universal elastic-viscoelastic correspondence principle or analogy (EVCP) in terms of PRs is demonstrated. Additionally and independently, the required double convolution integral construction of linear viscoelastic constitutive relations with the inclusion of PRs is cumbersome analytically and computationally needlessly highly CPU intensive. Furthermore, there is no theoretical fundamental hint as to what loading path is required to produce a unique universal viscoelastic PR definition necessary for formulating a PR based constitutive relation or an EVCP protocol. The analysis associated with an additional Class VII viscoelastic PR establishes it as a universal representation which is loading path and strain independent while still remaining time dependent. This Class PR can be the one used if it is desired to express constitutive relations in terms of PRs, subject to the caveat applying to all PR Classes regarding the CPU intensiveness in the time space due to triple product and double convolution integral constitutive relations. However, the use PRs is unnecessary since any set of material behavior can be uniquely and completely defined in terms of only moduli and/or compliances. The mathematical model of instantaneous initial loading paths, based on Heavi-side functions, is examined in detail and shown to lead to infinite velocities and accelerations. Additionally, even if non-instantaneous gradual loading functions are employed the resulting PRs are still load and load history dependent. Consequently, they represent specialized PR responses applicable and limited to those particular load and history combinations. Although the analyses contained herein are generalized to non-homogeneous linear viscoelastic materials, the main focus is on PR time and process dependence. The non-homogeneous material results and conclusions presented herein apply equally to homogeneous viscoelasticity and per se do not influence the results or conclusions of the analytical development regarding viscoelastic PRs. In short, these PR analyses apply to all linear viscoelastic material characterization.
文摘Orthogonal frequency division multiplexing (OFDM) is vastly used in wireless networks. Its superiority relies on the fact that information can be split in large amount of frequencies. Each frequency is called information subcarrier. OFDM exhibits excellent annotation in channel fades and interferers as only a few subcarriers can be affected and consequently a small part of the original data stream can be lost. Orthogonality between frequencies ensures better spectrum management and obviates the danger of intersymbol interference. However, an essential problem exists. OFDM systems have high peak to average power ratio. This implies large fluctuations in signal power, ending up in increasing complexity of ADCs and DACs. Also, power amplifiers must work in a larger linear dynamic region. In this paper we present two new techniques for reducing Peak to Average Power Ratio (PAPR), that can be added in any OFDM system and we compare them with other existing schemes.
基金This research was supported by the National Natural Science Foundation of China under Grant No.49794030.
文摘Numerical simulations of two heavy rainfall cases in the Changjiang-Huaihe River basin are performed with TRMM/PR (precipitation radar) data incorporated into the PSU/NCAR meso scale model MM5. The mixing ratio of rainwater q <SUB>r</SUB> is obtained from the R −q <SUB>r</SUB> relation (R is the rainfall rate), and the mixing ratio of water vapor q <SUB>v</SUB> in the model is replaced by q <SUP>1</SUP>′<SUB>v</SUB> = q <SUB>v</SUB>+q <SUB>r</SUB>. Then, TRMM/PR data are used to modify humidity analysis obtained from conventional radiosonde data, and sensitivity experiments (STE) are performed and compared to control experiments (CTL). Results show that both the heavy rainfall distribution and its maximum amounts from STE are improved compared with those from CTL.
文摘Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.