期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Density functional theory study on the influence of cation ratio on the host layer structure of Zn/Al double hydroxides 被引量:1
1
作者 Hong Yan Min Wei +1 位作者 Jing Ma Xue Duan 《Particuology》 SCIE EI CAS CSCD 2010年第3期212-220,共9页
A density functional theory (DFT) study has been carried out for [Zn-1AI(OH2)n+6(OH)2n-2]^3+ (n=3-6) and [Znn-1AI(OH2)2n-2(OH)2n-2]^3+ (n = 7) clusters, which include the basic structural information ... A density functional theory (DFT) study has been carried out for [Zn-1AI(OH2)n+6(OH)2n-2]^3+ (n=3-6) and [Znn-1AI(OH2)2n-2(OH)2n-2]^3+ (n = 7) clusters, which include the basic structural information of the brucite-like lattice structure of Zn/Al layered double hydroxides (LDHs) with Zn/AI molar ratio (R) in the range 2-6, in order to understand the effect of the Zn/Al ratio on the structure and stability of binary Zn/Al LDHs. Based on systematic calculations of the geometric parameters and formation energies of the cluster models, it was found that it is possible for Zn^2+ and Al^3+ cations to replace Mg^2+ isomorphously in the brucite-like structure with different R values, resulting in differences in microstructure of the clusters and unit cell parameter a of the Zn/Al LDHs. Analysis of the geometry and bonding around the trivalent Al^3+ or divalent Zn^2+ cations reveals that Al^3+ plays a more significant role than Zn^2+ in determining the microstructure properties, formation and bonding stability of the corresponding ZnRAl clusters when R〈5, while the influence of Zn^2+ becomes the dominant factor in the case of R〉 5. These findings are in good agreement with experiments. This work provides a detailed electronic-level understanding of how the composition of cations affects the microstructure and stability of Zn-containing binary LDH layers. 展开更多
关键词 Layered double hydroxide Zn/Al molar ratio Density functional calculation Microstructure Formation and bonding stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部